Penerapan Seleksi Fitur Particle Swarm Optimization pada Klasifikasi Teks (Studi Kasus: Komentar Cyberbullying Instagram)

Nadya Lestari, Tursina Tursina, Enda Esyudha Pratama
{"title":"Penerapan Seleksi Fitur Particle Swarm Optimization pada Klasifikasi Teks (Studi Kasus: Komentar Cyberbullying Instagram)","authors":"Nadya Lestari, Tursina Tursina, Enda Esyudha Pratama","doi":"10.26418/jp.v9i2.68320","DOIUrl":null,"url":null,"abstract":"Dunia saat ini sedang berada di era Big Data, dimana sejumlah besar data berdimensi tinggi tersebar di berbagai domain, seperti media sosial, layanan kesehatan, bio-informatika, dan pendidikan online. Big Data adalah salah satu teknik pembelajaran mesin dan menjadi alat penting yang populer dalam bisnis, sehingga pengelolaan Big Data yang efektif menjadi hal yang sangat penting. Salah satu topik yang menarik untuk diteliti dalam kajian Big Data khususnya text mining ialah cyberbullying Instagram. Beberapa teknik yang dapat digunakan untuk memecahkan masalah text mining yaitu, clustering, klasifikasi, outlier, asosiasi, dan masih banyak lagi. Klasifikasi merupakan bentuk dasar dari analisis data yang banyak diterapkan diberbagai bidang. Penelitian ini membangun model klasifikasi menggunakan algoritma Logistic Regression dengan penambahan proses seleksi fitur menggunakan algoritma Particle Swarm Optimization sebagai tahapan yang berada sebelum proses pelatihan model regresi untuk mengklasifikasi komentar cyberbullying Instagram. Seleksi fitur dilakukan untuk mempertahankan kinerja model klasifikasi dengan menggunakan jumlah fitur pelatihan yang lebih sedikit. Hasil penelitian menunjukkan bahwa penambahan seleksi fitur dapat mereduksi fitur kata sebanyak 40% yang diikuti penurunan akurasi, presisi, dan AUC masing-masing sebesar 1,25%, 4,25%, 1,09% serta peningkatan nilai recall dan f1-score secara berurut sebesar 5,36% dan 0,57%. Penambahan Particle Swarm Optimization sebagai seleksi fitur pada kasus disimpulkan efektif mempertahankan kinerja pembelajaran model dilihat dari nilai AUC yang tetap berada pada kategori Good Classification saat dilatih dengan fitur kata yang lebih sedikit.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v9i2.68320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dunia saat ini sedang berada di era Big Data, dimana sejumlah besar data berdimensi tinggi tersebar di berbagai domain, seperti media sosial, layanan kesehatan, bio-informatika, dan pendidikan online. Big Data adalah salah satu teknik pembelajaran mesin dan menjadi alat penting yang populer dalam bisnis, sehingga pengelolaan Big Data yang efektif menjadi hal yang sangat penting. Salah satu topik yang menarik untuk diteliti dalam kajian Big Data khususnya text mining ialah cyberbullying Instagram. Beberapa teknik yang dapat digunakan untuk memecahkan masalah text mining yaitu, clustering, klasifikasi, outlier, asosiasi, dan masih banyak lagi. Klasifikasi merupakan bentuk dasar dari analisis data yang banyak diterapkan diberbagai bidang. Penelitian ini membangun model klasifikasi menggunakan algoritma Logistic Regression dengan penambahan proses seleksi fitur menggunakan algoritma Particle Swarm Optimization sebagai tahapan yang berada sebelum proses pelatihan model regresi untuk mengklasifikasi komentar cyberbullying Instagram. Seleksi fitur dilakukan untuk mempertahankan kinerja model klasifikasi dengan menggunakan jumlah fitur pelatihan yang lebih sedikit. Hasil penelitian menunjukkan bahwa penambahan seleksi fitur dapat mereduksi fitur kata sebanyak 40% yang diikuti penurunan akurasi, presisi, dan AUC masing-masing sebesar 1,25%, 4,25%, 1,09% serta peningkatan nilai recall dan f1-score secara berurut sebesar 5,36% dan 0,57%. Penambahan Particle Swarm Optimization sebagai seleksi fitur pada kasus disimpulkan efektif mempertahankan kinerja pembelajaran model dilihat dari nilai AUC yang tetap berada pada kategori Good Classification saat dilatih dengan fitur kata yang lebih sedikit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文章分类的特别特征Swarm优化应用(案例研究:网络欺凌评论)
今天的世界是一个大数据时代,大量的高尺寸数据分布在许多领域,如社交媒体、医疗、生物信息和在线教育。大数据是机器学习技术之一,是商业中很受欢迎的重要工具,因此有效的大数据管理变得非常重要。在大数据挖掘研究中有趣的研究之一是Instagram欺凌事件。一些可以用来解决文本挖掘问题的技术,如,clustering,分类,outlier,联想,等等。分类是应用于不同领域的广泛数据分析的基础形式。该研究使用特征选择算法通过引入Swarm Optimization算法创建分类模型。通过使用更少的培训特征特征来维持分类模型的性能。研究结果表明,功能选择的增加可以还原40%的单词功能,然后分别降低1.25%、4.25%、109%,恢复值和f1-score的值以5.36%和0.57%的顺序递减。在案例中加入Swarm优化部分作为特征选择,可以有效地保留模型的学习表现,从AUC的价值看出,它在训练时处于好古典主义类别中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
期刊最新文献
Optimasi Hyperparameter pada Neural Network (Studi Kasus: Identifikasi Komentar Cyberbullying Instagram) Algoritma Penanganan Constraint pada Persoalan Penjadwalan Perkuliahan Universitas di Lingkungan Pendidikan Tinggi Keagamaan Islam (PTKI) Sistem Penilaian Jawaban Singkat Otomatis pada Ujian Online Berbasis Komputer Menggunakan Algoritma Cosine Similarity Penerapan Seleksi Fitur Particle Swarm Optimization pada Klasifikasi Teks (Studi Kasus: Komentar Cyberbullying Instagram) Sistem Rekomendasi Topik Skripsi Program Studi Informatika
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1