Marginal Log‐linear Parameters and their Collapsibility for Categorical Data

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2023-11-13 DOI:10.1111/stan.12332
S. Ghosh, P. Vellaisamy
{"title":"Marginal Log‐linear Parameters and their Collapsibility for Categorical Data","authors":"S. Ghosh, P. Vellaisamy","doi":"10.1111/stan.12332","DOIUrl":null,"url":null,"abstract":"Collapsibility is a practical and useful technique for dimension reduction in multidimensional contingency tables. In this paper, we consider marginal log‐linear models for studying collapsibility and related aspects in such tables. These models generalize ordinary log‐linear and multivariate logistic models, besides several others. First, we obtain some characteristic properties of marginal log‐linear parameters. Then we define collapsibility and strict collapsibility of these parameters in a general sense. Several necessary and sufficient conditions for collapsibility and strict collapsibility are derived based on simple functions of only the cell probabilities, which are easily verifiable. These include results for an arbitrary set of marginal log‐linear parameters having some common effects. The connections of strict collapsibility to various forms of independence of the variables are explored. We analyze some real‐life datasets to illustrate the above results on collapsibility and strict collapsibility. Finally, we obtain a result relating parameters with the same effect, but different margins for an arbitrary table, and demonstrate smoothness of marginal log‐linear models under collapsibility conditions. This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"11 2","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12332","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Collapsibility is a practical and useful technique for dimension reduction in multidimensional contingency tables. In this paper, we consider marginal log‐linear models for studying collapsibility and related aspects in such tables. These models generalize ordinary log‐linear and multivariate logistic models, besides several others. First, we obtain some characteristic properties of marginal log‐linear parameters. Then we define collapsibility and strict collapsibility of these parameters in a general sense. Several necessary and sufficient conditions for collapsibility and strict collapsibility are derived based on simple functions of only the cell probabilities, which are easily verifiable. These include results for an arbitrary set of marginal log‐linear parameters having some common effects. The connections of strict collapsibility to various forms of independence of the variables are explored. We analyze some real‐life datasets to illustrate the above results on collapsibility and strict collapsibility. Finally, we obtain a result relating parameters with the same effect, but different margins for an arbitrary table, and demonstrate smoothness of marginal log‐linear models under collapsibility conditions. This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类数据的边际对数线性参数及其可折叠性
折叠性是一种实用的多维列联表降维技术。在本文中,我们考虑边际对数线性模型来研究这种表的可折叠性和相关方面。这些模型推广了普通的对数线性和多元逻辑模型,以及其他一些模型。首先,我们得到了边际对数线性参数的一些特征性质。然后在一般意义上定义了这些参数的可折叠性和严格可折叠性。从单元概率的简单函数出发,导出了可折叠性和严格可折叠性的几个充分必要条件,这些条件易于验证。这些结果包括具有一些共同效应的任意一组边际对数线性参数的结果。探讨了严格可折叠性与各种形式的变量独立性之间的联系。我们分析了一些实际数据集来说明上述关于可折叠性和严格可折叠性的结果。最后,我们得到了一个关于任意表的参数具有相同效果,但边界不同的结果,并证明了边际对数线性模型在可折叠性条件下的平滑性。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1