{"title":"Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root","authors":"Haozhe Jiang, Ostap Okhrin, Michael Rockinger","doi":"10.1111/stan.12354","DOIUrl":null,"url":null,"abstract":"This paper introduces an artificial neural network (ANN) approach to estimate the autoregressive process AR(1) when the autocorrelation parameter is near one. Traditional ordinary least squares (OLS) estimators suffer from biases in small samples, necessitating various correction methods proposed in the literature. The ANN, trained on simulated data, outperforms these methods due to its nonlinear structure. Unlike competitors requiring simulations for bias corrections based on specific sample sizes, the ANN directly incorporates sample size as input, eliminating the need for repeated simulations. Stability tests involve exploring different ANN architectures and activation functions and robustness to varying distributions of the process innovations. Empirical applications on financial and industrial data highlight significant differences among methods, with ANN estimates suggesting lower persistence than other approaches.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12354","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an artificial neural network (ANN) approach to estimate the autoregressive process AR(1) when the autocorrelation parameter is near one. Traditional ordinary least squares (OLS) estimators suffer from biases in small samples, necessitating various correction methods proposed in the literature. The ANN, trained on simulated data, outperforms these methods due to its nonlinear structure. Unlike competitors requiring simulations for bias corrections based on specific sample sizes, the ANN directly incorporates sample size as input, eliminating the need for repeated simulations. Stability tests involve exploring different ANN architectures and activation functions and robustness to varying distributions of the process innovations. Empirical applications on financial and industrial data highlight significant differences among methods, with ANN estimates suggesting lower persistence than other approaches.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.