Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-01 DOI:10.1111/stan.12354
Haozhe Jiang, Ostap Okhrin, Michael Rockinger
{"title":"Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root","authors":"Haozhe Jiang, Ostap Okhrin, Michael Rockinger","doi":"10.1111/stan.12354","DOIUrl":null,"url":null,"abstract":"This paper introduces an artificial neural network (ANN) approach to estimate the autoregressive process AR(1) when the autocorrelation parameter is near one. Traditional ordinary least squares (OLS) estimators suffer from biases in small samples, necessitating various correction methods proposed in the literature. The ANN, trained on simulated data, outperforms these methods due to its nonlinear structure. Unlike competitors requiring simulations for bias corrections based on specific sample sizes, the ANN directly incorporates sample size as input, eliminating the need for repeated simulations. Stability tests involve exploring different ANN architectures and activation functions and robustness to varying distributions of the process innovations. Empirical applications on financial and industrial data highlight significant differences among methods, with ANN estimates suggesting lower persistence than other approaches.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12354","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an artificial neural network (ANN) approach to estimate the autoregressive process AR(1) when the autocorrelation parameter is near one. Traditional ordinary least squares (OLS) estimators suffer from biases in small samples, necessitating various correction methods proposed in the literature. The ANN, trained on simulated data, outperforms these methods due to its nonlinear structure. Unlike competitors requiring simulations for bias corrections based on specific sample sizes, the ANN directly incorporates sample size as input, eliminating the need for repeated simulations. Stability tests involve exploring different ANN architectures and activation functions and robustness to varying distributions of the process innovations. Empirical applications on financial and industrial data highlight significant differences among methods, with ANN estimates suggesting lower persistence than other approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络对接近单位根的 AR(1) 参数进行小样本偏置校正
本文介绍了一种人工神经网络(ANN)方法,用于估计自相关参数接近 1 时的自回归过程 AR(1)。传统的普通最小二乘法(OLS)估计器在小样本时存在偏差,因此需要采用文献中提出的各种修正方法。在模拟数据基础上训练的方差网络因其非线性结构而优于这些方法。与需要根据特定样本大小进行模拟以纠正偏差的竞争对手不同,方差网络直接将样本大小作为输入,无需重复模拟。稳定性测试包括探索不同的 ANN 架构和激活函数,以及对过程创新的不同分布的稳健性。金融和工业数据的实证应用凸显了各种方法之间的显著差异,其中方差网络估算的持久性低于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1