Functions operating on several multivariate distribution functions

IF 0.6 Q4 STATISTICS & PROBABILITY Dependence Modeling Pub Date : 2023-01-01 DOI:10.1515/demo-2023-0104
Paul Ressel
{"title":"Functions operating on several multivariate distribution functions","authors":"Paul Ressel","doi":"10.1515/demo-2023-0104","DOIUrl":null,"url":null,"abstract":"Abstract Functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> </m:math> {\\left[0,1]}^{m} such that every composition <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>∘</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f\\circ \\left({g}_{1},\\ldots ,{g}_{m}) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> </m:math> d -dimensional distribution functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {g}_{1},\\ldots ,{g}_{m} is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> d=2 means ultramodularity. For <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> m=1 (and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> d=2 ), this is equivalent with increasing convexity.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"99 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Functions f f on [ 0 , 1 ] m {\left[0,1]}^{m} such that every composition f ( g 1 , , g m ) f\circ \left({g}_{1},\ldots ,{g}_{m}) with d d -dimensional distribution functions g 1 , , g m {g}_{1},\ldots ,{g}_{m} is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for d = 2 d=2 means ultramodularity. For m = 1 m=1 (and d = 2 d=2 ), this is equivalent with increasing convexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作用于多个多元分布函数的函数
函数f f on [0,1] m {\left[0,1]}^{m}使得f\circ \left({g}_{1},\ldots,{g}_{m})与d维分布函数g 1,…,g m {g}_{1},\ldots,{g}_{m}的每一个组合都是一个分布函数,证明它具有一个非常自然的单调性条件,对于d=2, d=2意味着超模性。对于m=1 m=1(和d=2 d=2),这等同于增加凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
期刊最新文献
Joint lifetime modeling with matrix distributions On copulas with a trapezoid support When copulas and smoothing met: An interview with Irène Gijbels Mutual volatility transmission between assets and trading places Functions operating on several multivariate distribution functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1