首页 > 最新文献

Dependence Modeling最新文献

英文 中文
Characterization of pre-idempotent Copulas 前幂等copula的性质
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0106
Wongtawan Chamnan, Songkiat Sumetkijakan
Abstract Copulas C C for which ( C t C ) 2 = C t C {({C}^{t}C)}^{2}={C}^{t}C are called pre-idempotent copulas, of which well-studied examples are idempotent copulas and complete dependence copulas. As such, we shall work mainly with the topology induced by the modified Sobolev norm, with respect to which the class {mathcal{ {mathcal R} }} of pre-idempotent copulas is closed and the class of factorizable copulas is a dense subset of {mathcal{ {mathcal R} }} . Identifying copulas with Markov operators on L 2 {L}^{2} , the one-to-one correspondence between pre-idempotent copulas and partial isometries is one of our main tools. In the same spirit as Darsow and Olsen’s work on idempotent copulas, we obtain an explicit characterization of pre-idempotent copulas, which is split into cases according to the atomicity of its associated σ sigma -algebras, where the nonatomic case gives all factorizable copulas and the totally atomic case yields conjugates of ordinal sums of copies of the product copula.
摘要(C - t - C) 2 = C - t - C {({C}^{t}C)}^{2}={C}^{t}C的copulc - C被称为前幂等偶,其中研究较多的例子是幂等偶和完全相关copulc。因此,我们将主要研究由修正Sobolev范数引起的拓扑结构,在该拓扑结构下,前幂等copulas的类群∑{mathcal{{mathcal R}}}是封闭的,而可分解copulas的类群是∑{mathcal{{mathcal R}}}的密集子集。用l2 {L}^{2}上的马尔可夫算子识别联结,前幂等联结与部分等距的一一对应是我们的主要工具之一。与Darsow和Olsen关于幂等幂偶的研究精神相同,我们得到了前幂等幂偶的显式刻画,根据其相关σ σ -代数的原子性将其分成若干种情况,其中非原子情况给出了所有可分解的幂等幂偶,而全原子情况给出了乘积幂等幂偶的序和的共轭。
{"title":"Characterization of pre-idempotent Copulas","authors":"Wongtawan Chamnan, Songkiat Sumetkijakan","doi":"10.1515/demo-2023-0106","DOIUrl":"https://doi.org/10.1515/demo-2023-0106","url":null,"abstract":"Abstract Copulas <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>C</m:mi> </m:math> C for which <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msup> <m:mi>C</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msup> <m:mi>C</m:mi> </m:math> {({C}^{t}C)}^{2}={C}^{t}C are called pre-idempotent copulas, of which well-studied examples are idempotent copulas and complete dependence copulas. As such, we shall work mainly with the topology induced by the modified Sobolev norm, with respect to which the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">ℛ</m:mi> </m:math> {mathcal{ {mathcal R} }} of pre-idempotent copulas is closed and the class of factorizable copulas is a dense subset of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">ℛ</m:mi> </m:math> {mathcal{ {mathcal R} }} . Identifying copulas with Markov operators on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> {L}^{2} , the one-to-one correspondence between pre-idempotent copulas and partial isometries is one of our main tools. In the same spirit as Darsow and Olsen’s work on idempotent copulas, we obtain an explicit characterization of pre-idempotent copulas, which is split into cases according to the atomicity of its associated <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>σ</m:mi> </m:math> sigma -algebras, where the nonatomic case gives all factorizable copulas and the totally atomic case yields conjugates of ordinal sums of copies of the product copula.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135661990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When copulas and smoothing met: An interview with Irène Gijbels 当交配和平滑相遇:Irène Gijbels访谈
IF 0.7 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2022-0154
C. Genest, M. Scherer
{"title":"When copulas and smoothing met: An interview with Irène Gijbels","authors":"C. Genest, M. Scherer","doi":"10.1515/demo-2022-0154","DOIUrl":"https://doi.org/10.1515/demo-2022-0154","url":null,"abstract":"","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49362457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Joint lifetime modeling with matrix distributions 基于矩阵分布的关节寿命建模
IF 0.7 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2022-0153
H. Albrecher, Martin Bladt, Alaric J. A. Müller
Abstract Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that were based on a separate estimation of the marginal behavior and the dependence structure through a copula, we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint lifetimes without that separation. We study properties of mIPH class members and provide an adapted estimation procedure that allows for right-censoring and covariate information. We show that initial distribution vectors in our construction can be tailored to reflect the dependence of the random variables and use multinomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illustrations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.
无环相型(PH)分布在生存分析中一直是一种流行的工具,这得益于它们在衰老过程中不可避免的吸收方面的自然解释。在本文中,我们考虑对关节寿命建模的二元设置的扩展。与以往文献中基于边际行为和依赖结构的单独估计的模型相比,我们提出了一个新的多变量PH (mIPH)类的时间非均匀版本,该模型可以在没有分离的情况下获得关节寿命模型。我们研究了mIPH类成员的性质,并提供了一个适应的估计程序,允许右审查和协变量信息。我们表明,在我们的构造中,初始分布向量可以被定制以反映随机变量的依赖性,并使用多项回归来确定协变量对启动概率的影响。此外,我们还强调了时间不均匀性所带来的所需阶段的灵活性和简洁性。对Frees等人的关节寿命数据集给出了数值说明,其中10个阶段足以达到合理的拟合性能。作为副产品,所提出的方法可以对关节寿命老化机制中的关联进行自然的因果解释,这超出了统计拟合。
{"title":"Joint lifetime modeling with matrix distributions","authors":"H. Albrecher, Martin Bladt, Alaric J. A. Müller","doi":"10.1515/demo-2022-0153","DOIUrl":"https://doi.org/10.1515/demo-2022-0153","url":null,"abstract":"Abstract Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that were based on a separate estimation of the marginal behavior and the dependence structure through a copula, we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint lifetimes without that separation. We study properties of mIPH class members and provide an adapted estimation procedure that allows for right-censoring and covariate information. We show that initial distribution vectors in our construction can be tailored to reflect the dependence of the random variables and use multinomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illustrations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"11 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45079171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data 基于角概率积分变换的二元独立性检验,重点是圆-圆和圆-线性数据
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0103
Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
Abstract The probability integral transform of a continuous random variable X X with distribution function F X {F}_{X} is a uniformly distributed random variable U = F X ( X ) U={F}_{X}left(X) . We define the angular probability integral transform (APIT) as θ U = 2 π U = 2 π F X ( X ) {theta }_{U}=2pi U=2pi {F}_{X}left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 π pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 π pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, X 1 {X}_{1} and X 2 {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 π pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.
连续随机变量X X对分布函数F X {F_X}的概率积分变换是均匀分布随机变量U=F X (X) U={F_X}{}{}left (X)。我们定义角概率积分变换(APIT)为θ U=2 π U=2 π F X (X) {theta _U}=2{}pi U=2 pi F_X{}{}left (X),它对应于单位圆上的均匀分布角。对于圆(角)随机变量,绝对连续独立圆形均匀随机变量的和模2 π pi为圆形均匀随机变量,即圆形均匀分布在和模2 π pi下闭合,在单位圆上为稳定连续分布。如果我们考虑两个随机变量x1 X_1和x2 {X_2}的APITs的和(差),并检验它们的和(差)模2 π {}{}{}pi的圆形均匀性,这相当于检验原始变量的独立性。在这项研究中,我们使用了一个灵活的非负三角和(NNTS)圆形分布族,其中包括均匀圆形分布作为该家族的成员,通过从NNTS替代分布中生成样本来评估所提出的独立性检验的能力,这些分布可能更接近于圆形均匀零分布。
{"title":"Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data","authors":"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez","doi":"10.1515/demo-2023-0103","DOIUrl":"https://doi.org/10.1515/demo-2023-0103","url":null,"abstract":"Abstract The probability integral transform of a continuous random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> X with distribution function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> </m:math> {F}_{X} is a uniformly distributed random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> U={F}_{X}left(X) . We define the angular probability integral transform (APIT) as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mi>U</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {theta }_{U}=2pi U=2pi {F}_{X}left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {X}_{1} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Testing for explosive bubbles: a review 爆炸性气泡的测试:综述
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2022-0152
Anton Skrobotov
Abstract This review discusses methods of testing for explosive bubbles in time series. A large number of recently developed testing methods under various assumptions about innovation of errors are covered. The review also considers the methods for dating explosive (bubble) regimes. Special attention is devoted to time-varying volatility in the errors. Moreover, the modelling of possible relationships between time series with explosive regimes is discussed.
摘要本文综述了爆炸性气泡的时间序列检测方法。大量的最新开发的测试方法在各种假设下的创新误差被涵盖。这篇综述还考虑了爆炸(气泡)政权测年的方法。特别注意误差的时变波动。此外,还讨论了时间序列与爆炸状态之间可能关系的建模。
{"title":"Testing for explosive bubbles: a review","authors":"Anton Skrobotov","doi":"10.1515/demo-2022-0152","DOIUrl":"https://doi.org/10.1515/demo-2022-0152","url":null,"abstract":"Abstract This review discusses methods of testing for explosive bubbles in time series. A large number of recently developed testing methods under various assumptions about innovation of errors are covered. The review also considers the methods for dating explosive (bubble) regimes. Special attention is devoted to time-varying volatility in the errors. Moreover, the modelling of possible relationships between time series with explosive regimes is discussed.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135126904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Functions operating on several multivariate distribution functions 作用于多个多元分布函数的函数
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0104
Paul Ressel
Abstract Functions f f on [ 0 , 1 ] m {left[0,1]}^{m} such that every composition f ( g 1 , , g m ) fcirc left({g}_{1},ldots ,{g}_{m}) with d d -dimensional distribution functions g 1 , , g m {g}_{1},ldots ,{g}_{m} is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for d = 2 d=2 means ultramodularity. For m = 1 m=1 (and d = 2 d=2 ), this is equivalent with increasing convexity.
函数f f on [0,1] m {left[0,1]}^{m}使得fcirc left({g}_{1},ldots,{g}_{m})与d维分布函数g 1,…,g m {g}_{1},ldots,{g}_{m}的每一个组合都是一个分布函数,证明它具有一个非常自然的单调性条件,对于d=2, d=2意味着超模性。对于m=1 m=1(和d=2 d=2),这等同于增加凸性。
{"title":"Functions operating on several multivariate distribution functions","authors":"Paul Ressel","doi":"10.1515/demo-2023-0104","DOIUrl":"https://doi.org/10.1515/demo-2023-0104","url":null,"abstract":"Abstract Functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> </m:math> {left[0,1]}^{m} such that every composition <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>∘</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> fcirc left({g}_{1},ldots ,{g}_{m}) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> </m:math> d -dimensional distribution functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {g}_{1},ldots ,{g}_{m} is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> d=2 means ultramodularity. For <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> m=1 (and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> d=2 ), this is equivalent with increasing convexity.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135007458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A link between Kendall’s τ, the length measure and the surface of bivariate copulas, and a consequence to copulas with self-similar support 研究了肯德尔τ、长度度量和二元连簇表面之间的联系,以及对具有自相似支持的连簇的推论
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0105
Juan Fernández Sánchez, Wolfgang Trutschnig
Abstract Working with shuffles, we establish a close link between Kendall’s τ tau , the so-called length measure, and the surface area of bivariate copulas and derive some consequences. While it is well known that Spearman’s ρ rho of a bivariate copula A A is a rescaled version of the volume of the area under the graph of A A , in this contribution we show that the other famous concordance measure, Kendall’s τ tau , allows for a simple geometric interpretation as well – it is inextricably linked to the surface area of A A .
摘要通过对shuffle的研究,我们建立了Kendall τ tau(所谓的长度度量)与二元copula的表面积之间的密切联系,并推导了一些结果。众所周知,双变量copula a的Spearman ρ rho是a a图下面积体积的重新缩放版本,在本文中,我们展示了另一个著名的一致性度量,Kendall τ tau,也允许简单的几何解释-它与a a的表面积不可分割地联系在一起。
{"title":"A link between Kendall’s <i>τ</i>, the length measure and the surface of bivariate copulas, and a consequence to copulas with self-similar support","authors":"Juan Fernández Sánchez, Wolfgang Trutschnig","doi":"10.1515/demo-2023-0105","DOIUrl":"https://doi.org/10.1515/demo-2023-0105","url":null,"abstract":"Abstract Working with shuffles, we establish a close link between Kendall’s <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>τ</m:mi> </m:math> tau , the so-called length measure, and the surface area of bivariate copulas and derive some consequences. While it is well known that Spearman’s <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> rho of a bivariate copula <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> A is a rescaled version of the volume of the area under the graph of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> A , in this contribution we show that the other famous concordance measure, Kendall’s <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>τ</m:mi> </m:math> tau , allows for a simple geometric interpretation as well – it is inextricably linked to the surface area of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> A .","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135604265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On copulas with a trapezoid support 关于具有梯形支撑的copula
IF 0.7 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0101
P. Jaworski
Abstract A family of bivariate copulas given by: for v + 2 u < 2 v+2ult 2 , C ( u , v ) = F ( 2 F − 1 ( v ∕ 2 ) + F − 1 ( u ) ) Cleft(u,v)=Fleft(2{F}^{-1}left(v/2)+{F}^{-1}left(u)) , where F F is a strictly increasing cumulative distribution function of a symmetric, continuous random variable, and for v + 2 u ≥ 2 v+2uge 2 , C ( u , v ) = u + v − 1 Cleft(u,v)=u+v-1 , is introduced. The basic properties and necessary conditions for absolute continuity of C C are discussed. Several examples are provided.
摘要给出了一个二元系词族:对于v+2 u<2 v+2u lt 2,C(u,v)=F(2 F−1(v/m 2)+F−1 u、v)=u+v-1,介绍。讨论了C—C绝对连续性的基本性质和必要条件。提供了几个例子。
{"title":"On copulas with a trapezoid support","authors":"P. Jaworski","doi":"10.1515/demo-2023-0101","DOIUrl":"https://doi.org/10.1515/demo-2023-0101","url":null,"abstract":"Abstract A family of bivariate copulas given by: for v + 2 u < 2 v+2ult 2 , C ( u , v ) = F ( 2 F − 1 ( v ∕ 2 ) + F − 1 ( u ) ) Cleft(u,v)=Fleft(2{F}^{-1}left(v/2)+{F}^{-1}left(u)) , where F F is a strictly increasing cumulative distribution function of a symmetric, continuous random variable, and for v + 2 u ≥ 2 v+2uge 2 , C ( u , v ) = u + v − 1 Cleft(u,v)=u+v-1 , is introduced. The basic properties and necessary conditions for absolute continuity of C C are discussed. Several examples are provided.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46671910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutual volatility transmission between assets and trading places 资产与交易场所之间的相互波动传导
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2022-0155
Andreas Masuhr, Mark Trede
Abstract This article proposes a framework to model the mutual volatility transmission between multiple assets and multiple trading places in different time zones. The model is estimated using a dataset containing daily returns of three stock indices – the MSCI Japan, the EuroStoxx 50, and the S&P 500 – each traded at three major trading places: the stock exchanges in Tokyo, London, and New York. Strong volatility transmission effects can be observed between New York and Tokyo, whereas current volatility in New York mostly depends on past volatility in New York. For the assets in consideration, spillovers are strong across trading zones, but weak across assets, suggesting a close connection between market places but only a loose volatility link between international stock indices. Volatility impulse response functions indicate a long-lasting and comparably large response of volatility in Tokyo, whereas they suggest a quicker volatility decay in London and New York.
摘要本文提出了一个框架来模拟不同时区多个资产和多个交易场所之间的相互波动传导。该模型使用包含三个股票指数(MSCI Japan、EuroStoxx 50和s&p 500)日收益的数据集进行估算,这三个指数分别在三个主要交易场所交易:东京、伦敦和纽约的证券交易所。在纽约和东京之间可以观察到强烈的波动传导效应,而纽约当前的波动主要取决于纽约过去的波动。就所考虑的资产而言,各贸易区之间的溢出效应很强,但各资产之间的溢出效应较弱,这表明各市场之间存在密切联系,但国际股指之间只有松散的波动联系。波动率脉冲响应函数表明东京波动率的响应时间较长且相对较大,而它们表明伦敦和纽约的波动率衰减更快。
{"title":"Mutual volatility transmission between assets and trading places","authors":"Andreas Masuhr, Mark Trede","doi":"10.1515/demo-2022-0155","DOIUrl":"https://doi.org/10.1515/demo-2022-0155","url":null,"abstract":"Abstract This article proposes a framework to model the mutual volatility transmission between multiple assets and multiple trading places in different time zones. The model is estimated using a dataset containing daily returns of three stock indices – the MSCI Japan, the EuroStoxx 50, and the S&amp;P 500 – each traded at three major trading places: the stock exchanges in Tokyo, London, and New York. Strong volatility transmission effects can be observed between New York and Tokyo, whereas current volatility in New York mostly depends on past volatility in New York. For the assets in consideration, spillovers are strong across trading zones, but weak across assets, suggesting a close connection between market places but only a loose volatility link between international stock indices. Volatility impulse response functions indicate a long-lasting and comparably large response of volatility in Tokyo, whereas they suggest a quicker volatility decay in London and New York.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135006813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimal transport-based characterization of convex order 基于输运的凸序最优表征
Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1515/demo-2023-0102
Johannes Wiesel, Erica Zhang
Abstract For probability measures <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> mu ,nu , and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>ρ</m:mi> </m:math> rho , define the cost functionals <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant="normal">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant="normal">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant="normal">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width="1.0em" /> <m:mi mathvariant="normal">and</m:mi> <m:mspace width="1em" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant="normal">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant="normal">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant="normal">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> Cleft(mu ,rho ):= mathop{sup }limits_{pi in Pi left(mu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}y)hspace{1.0em}{rm{and}}hspace{1em}Cleft(nu ,rho ):= mathop{sup }limits_{pi in Pi left(nu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}y), where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> langle cdot ,cdot rangle denotes the scalar product and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi mathvariant="normal">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> Pi left(cdot ,cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>μ</m:mi> </m:math> mu and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>ν</m:mi> </m:math> nu on <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mr
对于概率测度μ, ν mu ,nu , ρ rho ,定义代价泛函C (μ, ρ)是对π∈Π (μ, ρ)∫⟨x, y⟩π (d x, d y)和C (ν, ρ)是对π∈Π (ν, ρ)∫⟨x, y⟩π (d x, d y), Cleft(mu ,rho ):= mathop{sup }limits_{pi in Pi left(mu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}y)hspace{1.0em}{rm{and}}hspace{1em}cleft(nu ,rho ):= mathop{sup }limits_{pi in Pi left(nu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}Y),其中⟨,⋅⟩ langle cdot ,cdot rangle 表示标量积与Π(⋅,⋅) Pi left(cdot ,cdot )是联轴器的集合。我们证明了两个概率测度μ mu 和ν nu 在研发上 {{mathbb{R}}}^{d} 具有有限第一阶矩的是凸序的(即μ tmd ν) mu {preccurlyeq }_{c}nu ) C (μ, ρ)≤C (ν, ρleft(mu ,rho )le cleft(nu ,rho )适用于所有的概率度量ρ rho 在研发上 {{mathbb{R}}}^{d} 在有限的支持下。这推广了Carlier的一个结果。我们的证明依赖于∫f d ν -∫f d μ的极值的一个定量界 int f{rm{d}}nu -int f{rm{d}}mu 通过最优输运(OT)对偶性和r schendorf、Rachev和Brenier对OT(耦合)的表征结果得到的所有1-Lipschitz函数f。在这个结果的基础上,我们得到了凸序的一维刻画的新证明。我们还描述了研究凸序的新计算方法及其在数学金融中与模型无关的套利策略中的应用。
{"title":"An optimal transport-based characterization of convex order","authors":"Johannes Wiesel, Erica Zhang","doi":"10.1515/demo-2023-0102","DOIUrl":"https://doi.org/10.1515/demo-2023-0102","url":null,"abstract":"Abstract For probability measures &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ν&lt;/m:mi&gt; &lt;/m:math&gt; mu ,nu , and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:math&gt; rho , define the cost functionals &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;≔&lt;/m:mo&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mi&gt;sup&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Π&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;⟨&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;y&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⟩&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;y&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mspace width=\"1.0em\" /&gt; &lt;m:mi mathvariant=\"normal\"&gt;and&lt;/m:mi&gt; &lt;m:mspace width=\"1em\" /&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ν&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;≔&lt;/m:mo&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mi&gt;sup&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Π&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ν&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;⟨&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;y&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⟩&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;y&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:math&gt; Cleft(mu ,rho ):= mathop{sup }limits_{pi in Pi left(mu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}y)hspace{1.0em}{rm{and}}hspace{1em}Cleft(nu ,rho ):= mathop{sup }limits_{pi in Pi left(nu ,rho )}int langle x,yrangle pi left({rm{d}}x,{rm{d}}y), where &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mo&gt;⟨&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;⋅&lt;/m:mo&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mo&gt;⋅&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⟩&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; langle cdot ,cdot rangle denotes the scalar product and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi mathvariant=\"normal\"&gt;Π&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;⋅&lt;/m:mo&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mo&gt;⋅&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; Pi left(cdot ,cdot ) is the set of couplings. We show that two probability measures &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;/m:math&gt; mu and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;ν&lt;/m:mi&gt; &lt;/m:math&gt; nu on &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mr","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135009168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Dependence Modeling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1