Near-optimal estimation of linear functionals with log-concave observation errors

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2023-09-19 DOI:10.1093/imaiai/iaad038
Simon Foucart, Grigoris Paouris
{"title":"Near-optimal estimation of linear functionals with log-concave observation errors","authors":"Simon Foucart, Grigoris Paouris","doi":"10.1093/imaiai/iaad038","DOIUrl":null,"url":null,"abstract":"Abstract This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex and closed model set containing the object. It complements the article ‘Statistical Estimation and Optimal Recovery’ published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho’s proof.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"26 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex and closed model set containing the object. It complements the article ‘Statistical Estimation and Optimal Recovery’ published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho’s proof.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有log-凹观测误差的线性泛函的近最优估计
摘要:本文解决了通过随机噪声破坏的线性观测获得的对象的线性泛函的最优估计问题,其中最优性涉及与包含该对象的对称,凸和封闭模型集相关的最坏情况设置。它补充了1994年发表在《统计年鉴》上的文章“统计估计和最佳恢复”。在那里,Donoho展示了(除其他外),对于高斯噪声,相对于统计估计中相关的性能度量,线性映射提供了接近最优的估计方案。在这里,我们提倡一种不同的性能度量,可以说在最优恢复中更相关。我们表明,相对于这种新的测量方法,即使噪声仅仅是对数凹的,线性映射仍然提供接近最优的估计方案。我们的论点与确定性噪声情况和高斯情况特有的旁路特性有关,为多诺霍的部分证明提供了另一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1