A Latent Shrinkage Position Model for Binary and Count Network Data

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2023-01-01 DOI:10.1214/23-ba1403
Xian Yao Gwee, Isobel Claire Gormley, Michael Fop
{"title":"A Latent Shrinkage Position Model for Binary and Count Network Data","authors":"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop","doi":"10.1214/23-ba1403","DOIUrl":null,"url":null,"abstract":"Interactions between actors are frequently represented using a network. The latent position model is widely used for analysing network data, whereby each actor is positioned in a latent space. Inferring the dimension of this space is challenging. Often, for simplicity, two dimensions are used or model selection criteria are employed to select the dimension, but this requires choosing a criterion and the computational expense of fitting multiple models. Here the latent shrinkage position model (LSPM) is proposed which intrinsically infers the effective dimension of the latent space. The LSPM employs a Bayesian nonparametric multiplicative truncated gamma process prior that ensures shrinkage of the variance of the latent positions across higher dimensions. Dimensions with non-negligible variance are deemed most useful to describe the observed network, inducing automatic inference on the latent space dimension. While the LSPM is applicable to many network types, logistic and Poisson LSPMs are developed here for binary and count networks respectively. Inference proceeds via a Markov chain Monte Carlo algorithm, where novel surrogate proposal distributions reduce the computational burden. The LSPM’s properties are assessed through simulation studies, and its utility is illustrated through application to real network datasets. Open source software assists wider implementation of the LSPM.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ba1403","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Interactions between actors are frequently represented using a network. The latent position model is widely used for analysing network data, whereby each actor is positioned in a latent space. Inferring the dimension of this space is challenging. Often, for simplicity, two dimensions are used or model selection criteria are employed to select the dimension, but this requires choosing a criterion and the computational expense of fitting multiple models. Here the latent shrinkage position model (LSPM) is proposed which intrinsically infers the effective dimension of the latent space. The LSPM employs a Bayesian nonparametric multiplicative truncated gamma process prior that ensures shrinkage of the variance of the latent positions across higher dimensions. Dimensions with non-negligible variance are deemed most useful to describe the observed network, inducing automatic inference on the latent space dimension. While the LSPM is applicable to many network types, logistic and Poisson LSPMs are developed here for binary and count networks respectively. Inference proceeds via a Markov chain Monte Carlo algorithm, where novel surrogate proposal distributions reduce the computational burden. The LSPM’s properties are assessed through simulation studies, and its utility is illustrated through application to real network datasets. Open source software assists wider implementation of the LSPM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二进制和计数网络数据的潜在收缩位置模型
参与者之间的交互通常使用网络来表示。潜在位置模型被广泛用于分析网络数据,它将每个参与者定位在一个潜在空间中。推断这个空间的尺寸是有挑战性的。通常,为了简单起见,使用两个维度或使用模型选择标准来选择维度,但这需要选择一个标准和拟合多个模型的计算费用。提出了潜在收缩位置模型(LSPM),该模型从本质上推导了潜在空间的有效维数。LSPM采用贝叶斯非参数乘截断伽马过程,确保在更高维度上潜在位置的方差缩小。具有不可忽略方差的维度被认为对描述观察到的网络最有用,对潜在空间维度产生自动推理。虽然LSPM适用于许多网络类型,但本文分别针对二进制网络和计数网络开发了logistic和泊松LSPM。推理通过马尔可夫链蒙特卡罗算法进行,其中新颖的代理提议分布减少了计算负担。通过仿真研究评估了LSPM的性能,并通过实际网络数据集的应用说明了它的实用性。开源软件有助于更广泛地实现LSPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1