Nina Bednaršek, Richard Feely, Greg Pelletier, Flora Desmet
{"title":"Global Synthesis of the Status and Trends of Ocean Acidification Impacts on Shelled Pteropods","authors":"Nina Bednaršek, Richard Feely, Greg Pelletier, Flora Desmet","doi":"10.5670/oceanog.2023.210","DOIUrl":null,"url":null,"abstract":"The accumulation of anthropogenic CO2 in the ocean has major ecological, socioeconomic, and biogeochemical impacts, with repercussions for the ocean as a critical carbon sink. Ocean acidification (OA) disproportionally affects marine calcifiers, among which pelagic zooplanktonic pteropods play a significant role in carbonate export. The pteropod, due to the susceptibility of its aragonite shell to rapid dissolution, is one of most vulnerable groups and a key indicator for OA regional monitoring, but its regional sensitivities have not yet been extrapolated over global scales. To delineate spatial and temporal changes in pteropod shell dissolution, global OA status and the OA rate of change were evaluated, based on gridded climatologies of observations and using a Regional Ocean Modeling System (ROMS) biogeochemical/ecosystem model. Pteropods dominate in the polar and upwelling regions characterized by low aragonite saturation state and low buffering capacity, where extended pteropod subsurface dissolution is projected. We show that pteropods are most susceptible to OA in the polar regions, subpolar North Pacific, and eastern boundary upwelling system regions, particularly the California and Humboldt Current Systems. Rates of acidification and corresponding increases in pteropod shell dissolution are projected to be the fastest in the North and South Equatorial Currents.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":"85 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5670/oceanog.2023.210","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
The accumulation of anthropogenic CO2 in the ocean has major ecological, socioeconomic, and biogeochemical impacts, with repercussions for the ocean as a critical carbon sink. Ocean acidification (OA) disproportionally affects marine calcifiers, among which pelagic zooplanktonic pteropods play a significant role in carbonate export. The pteropod, due to the susceptibility of its aragonite shell to rapid dissolution, is one of most vulnerable groups and a key indicator for OA regional monitoring, but its regional sensitivities have not yet been extrapolated over global scales. To delineate spatial and temporal changes in pteropod shell dissolution, global OA status and the OA rate of change were evaluated, based on gridded climatologies of observations and using a Regional Ocean Modeling System (ROMS) biogeochemical/ecosystem model. Pteropods dominate in the polar and upwelling regions characterized by low aragonite saturation state and low buffering capacity, where extended pteropod subsurface dissolution is projected. We show that pteropods are most susceptible to OA in the polar regions, subpolar North Pacific, and eastern boundary upwelling system regions, particularly the California and Humboldt Current Systems. Rates of acidification and corresponding increases in pteropod shell dissolution are projected to be the fastest in the North and South Equatorial Currents.
期刊介绍:
First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.