Conservative Vector Fields and the Intersect Rule

Daniel A. Jaffa
{"title":"Conservative Vector Fields and the Intersect Rule","authors":"Daniel A. Jaffa","doi":"10.4236/jamp.2023.1110190","DOIUrl":null,"url":null,"abstract":"This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function. Gradient fields are irrotational, as in the curl in all conservative vector fields is zero, by Clairaut’s Theorem. Additionally, line integrals in conservative vector fields are path-independent, and line integrals over closed paths are always equal to zero, properties proved by the Gradient Theorem of multivariable calculus. Gradient fields represent conservative forces, and the associated potential function is analogous to potential energy associated with said conservative forces. The Intersect Rule provides a new, unique shortcut for determining if a vector field is conservative and deriving potential functions, by treating the indefinite integral as a set of infinitely many functions which satisfy the integral.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1110190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function. Gradient fields are irrotational, as in the curl in all conservative vector fields is zero, by Clairaut’s Theorem. Additionally, line integrals in conservative vector fields are path-independent, and line integrals over closed paths are always equal to zero, properties proved by the Gradient Theorem of multivariable calculus. Gradient fields represent conservative forces, and the associated potential function is analogous to potential energy associated with said conservative forces. The Intersect Rule provides a new, unique shortcut for determining if a vector field is conservative and deriving potential functions, by treating the indefinite integral as a set of infinitely many functions which satisfy the integral.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保守向量场和相交规则
本文介绍了保守向量场的概念及其在矢量物理和牛顿力学中的应用。保守向量场被定义为标量值势函数的梯度。梯度场是不旋转的,根据克劳定理,所有保守向量场的旋度都是零。此外,保守向量场中的线积分是路径无关的,封闭路径上的线积分总是等于零,这一性质由多变量微积分的梯度定理证明。梯度场表示保守力,相关的势函数类似于与所述保守力相关的势能。相交规则通过将不定积分视为满足该积分的无穷多个函数的集合,为确定向量场是否保守和推导势函数提供了一种新的、独特的捷径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks A Comparison of Four Methods of Estimating the Scale Parameter for the Exponential Distribution Optimal Treatment Strategy for Infectious Diseases with Two Treatment Stages Conservative Vector Fields and the Intersect Rule Dynamic Analysis of a Predator-Prey Model with Holling-II Functional Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1