After Two Decades, Argo at PMEL, Looks to the Future

IF 3.2 4区 地球科学 Q1 OCEANOGRAPHY Oceanography Pub Date : 2023-01-01 DOI:10.5670/oceanog.2023.223
Gregory Johnson, Andrea Fassbender
{"title":"After Two Decades, Argo at PMEL, Looks to the Future","authors":"Gregory Johnson, Andrea Fassbender","doi":"10.5670/oceanog.2023.223","DOIUrl":null,"url":null,"abstract":"The NOAA Pacific Environmental Laboratory (PMEL) has contributed to the revolutionary Argo ocean observing system since its inception, developing CTD calibration algorithms and software that have been adopted by the international Argo community. PMEL has provided over 1,440 Argo floats—~13% of the global array—with ~500 currently active. PMEL scientific contributions using Argo data have ranged from regional to global analyses of ocean circulation and water-mass variability, to ocean warming and its contributions to sea level rise and Earth’s energy imbalance, to estimates of global ocean deoxygenation. In recent years, PMEL has initiated both Deep Argo (with a regional pilot array of full-ocean-depth profiling floats in the rapidly changing and dynamic western South Atlantic) and Biogeochemical (BGC) Argo (with a pilot array in the biogeochemically diverse and economically important California Current Large Marine Ecosystem). PMEL is also developing innovative near-global maps of ocean physical and biogeochemical parameters using machine learning algorithms that enable investigations of societally important oceanographic phenomena, and an Adopt-A-Float program. Future challenges include growing the financial, infrastructure, and human resources necessary to take the Deep and BGC Argo missions global and to fulfill the One Argo mission of a global, full-depth, multidisciplinary ocean observing array.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5670/oceanog.2023.223","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

The NOAA Pacific Environmental Laboratory (PMEL) has contributed to the revolutionary Argo ocean observing system since its inception, developing CTD calibration algorithms and software that have been adopted by the international Argo community. PMEL has provided over 1,440 Argo floats—~13% of the global array—with ~500 currently active. PMEL scientific contributions using Argo data have ranged from regional to global analyses of ocean circulation and water-mass variability, to ocean warming and its contributions to sea level rise and Earth’s energy imbalance, to estimates of global ocean deoxygenation. In recent years, PMEL has initiated both Deep Argo (with a regional pilot array of full-ocean-depth profiling floats in the rapidly changing and dynamic western South Atlantic) and Biogeochemical (BGC) Argo (with a pilot array in the biogeochemically diverse and economically important California Current Large Marine Ecosystem). PMEL is also developing innovative near-global maps of ocean physical and biogeochemical parameters using machine learning algorithms that enable investigations of societally important oceanographic phenomena, and an Adopt-A-Float program. Future challenges include growing the financial, infrastructure, and human resources necessary to take the Deep and BGC Argo missions global and to fulfill the One Argo mission of a global, full-depth, multidisciplinary ocean observing array.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二十年后,PMEL的Argo展望未来
美国国家海洋和大气管理局(NOAA)太平洋环境实验室(PMEL)自Argo海洋观测系统成立以来,就为其革命性的海洋观测系统做出了贡献,开发了CTD校准算法和软件,已被国际Argo社区采用。PMEL已经提供了超过1,440个Argo浮标,约占全球阵列的13%,目前约有500个活跃。PMEL利用Argo数据做出的科学贡献包括从区域到全球的海洋环流和水质量变化分析,海洋变暖及其对海平面上升和地球能量失衡的贡献,以及对全球海洋脱氧的估计。近年来,PMEL启动了Deep Argo(在快速变化和动态的南大西洋西部进行全海洋深度剖面分析的区域试点阵列)和生物地球化学(BGC) Argo(在生物地球化学多样性和经济上重要的加利福尼亚洋流大型海洋生态系统中进行试点阵列)。PMEL还在开发创新的近全球海洋物理和生物地球化学参数地图,使用机器学习算法来调查具有社会重要性的海洋现象,以及采用- a - float程序。未来的挑战包括增加资金、基础设施和人力资源,以使Deep和BGC Argo任务全球化,并完成全球、全深度、多学科海洋观测阵列的One Argo任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oceanography
Oceanography 地学-海洋学
CiteScore
6.10
自引率
3.60%
发文量
39
审稿时长
6-12 weeks
期刊介绍: First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.
期刊最新文献
Cooperative Learning in Oceanography Unpaid Internships Are a Barrier to Diverse and Equitable Recruitment in Marine Science Hot Vents Beneath an Icy Ocean: The Aurora Vent Field, Gakkel Ridge, Revealed Evaluating the Evolving Ocean Acidification Risk to Dungeness Crab: Time-Series Observations and Modeling on the Olympic Coast, Washington, USA Global Synthesis of the Status and Trends of Ocean Acidification Impacts on Shelled Pteropods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1