{"title":"Energy storage techniques, applications, and recent trends: A sustainable solution for power storage","authors":"Parth Vaghela, Vaishnavi Pandey, Anirbid Sircar, Kriti Yadav, Namrata Bist, Roshni Kumari","doi":"10.1557/s43581-023-00069-9","DOIUrl":null,"url":null,"abstract":"Energy is essential in our daily lives to increase human development, which leads to economic growth and productivity. In recent national development plans and policies, numerous nations have prioritized sustainable energy storage. To promote sustainable energy use, energy storage systems are being deployed to store excess energy generated from renewable sources. Energy storage provides a cost-efficient solution to boost total energy efficiency by modulating the timing and location of electric energy generation and consumption. The purpose of this study is to present an overview of energy storage methods, uses, and recent developments. The emphasis is on power industry-relevant, environmentally friendly energy storage options. It discusses the various energy storage options available, including batteries, flywheels, thermal storage, pumped hydro storage, and many others. It also discusses how these technologies are used in the power sector and their benefits and drawbacks. The utilization of a Vanadium Redox Flow Battery in hybrid propulsion systems for marine applications, as well as the creation of a high energy density portable/mobile hydrogen energy storage system with an electrolyzer, a metal hydride, and a fuel cell are both covered in detail with a case study. The difficulties and prospects of each system, as well as the potential for further growth, are covered in detail in two case studies. The results of this study suggest that these technologies can be viable alternatives to traditional fuel sources, especially in remote areas and applications where the need for low-emission, unwavering, and cost-efficient energy storage is critical. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-023-00069-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy is essential in our daily lives to increase human development, which leads to economic growth and productivity. In recent national development plans and policies, numerous nations have prioritized sustainable energy storage. To promote sustainable energy use, energy storage systems are being deployed to store excess energy generated from renewable sources. Energy storage provides a cost-efficient solution to boost total energy efficiency by modulating the timing and location of electric energy generation and consumption. The purpose of this study is to present an overview of energy storage methods, uses, and recent developments. The emphasis is on power industry-relevant, environmentally friendly energy storage options. It discusses the various energy storage options available, including batteries, flywheels, thermal storage, pumped hydro storage, and many others. It also discusses how these technologies are used in the power sector and their benefits and drawbacks. The utilization of a Vanadium Redox Flow Battery in hybrid propulsion systems for marine applications, as well as the creation of a high energy density portable/mobile hydrogen energy storage system with an electrolyzer, a metal hydride, and a fuel cell are both covered in detail with a case study. The difficulties and prospects of each system, as well as the potential for further growth, are covered in detail in two case studies. The results of this study suggest that these technologies can be viable alternatives to traditional fuel sources, especially in remote areas and applications where the need for low-emission, unwavering, and cost-efficient energy storage is critical. Graphical abstract