A comparative study on microstructure and tribological characteristics of Mo2FeB2/WC self-lubricating composite coatings with addition of WS2, MoS2, and h-BN

Hao Zhang, Yingjun Pan, Yang Zhang, Guofu Lian, Qiang Cao, Linzhi Que
{"title":"A comparative study on microstructure and tribological characteristics of Mo2FeB2/WC self-lubricating composite coatings with addition of WS2, MoS2, and h-BN","authors":"Hao Zhang, Yingjun Pan, Yang Zhang, Guofu Lian, Qiang Cao, Linzhi Que","doi":"10.1016/j.matdes.2022.111581","DOIUrl":null,"url":null,"abstract":"To enhance the tribological properties and service life of Mo2FeB2/WC coatings, self-lubricating composite coatings with addition of WS2, MoS2, and h-BN were fabricated using laser cladding. The morphology, microstructure, microhardness, and tribological properties of the Mo2FeB2/WC self-lubricating composite coatings were investigated. The results indicated that the addition of WS2, MoS2, and h-BN increased the bonding properties between the coating and substrate. Sulfides and nitrides were found in the self-lubricating composite coatings; the Mo2FeB2/WC/h-BN coating exhibited a fine dendritic structure. The microhardnesses of the Mo2FeB2/WC, Mo2FeB2/WC/WS2, Mo2FeB2/WC/MoS2, and Mo2FeB2/WC/h-BN coatings were 1591.3 HV0.5, 1345.6 HV0.5, 1378.9 HV0.5, and 1415.3 HV0.5, respectively. After the addition of WS2, MoS2, and h-BN, the coefficients of friction decreased by 9.09%, 15.15%, and 30.30%, respectively; the corresponding wear rates decreased by 10.80%, 19.03%, and 30.97%, respectively. The self-lubricating phases significantly improved the tribological properties of the Mo2FeB2/WC coating. The main wear mechanisms of the Mo2FeB2/WC coating were adhesive and mild oxidative wear; the wear mechanisms after the addition of WS2, MoS2, and h-BN were abrasive and oxidative wear. The wear debris was powder-like for the Mo2FeB2/WC/WS2 and Mo2FeB2/WC/MoS2 coatings and flake-like for the Mo2FeB2/WC/h-BN coating. The lubricating transfer film caused an improvement in the tribological properties.","PeriodicalId":101318,"journal":{"name":"MATERIALS & DESIGN","volume":"29 1","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATERIALS & DESIGN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.matdes.2022.111581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To enhance the tribological properties and service life of Mo2FeB2/WC coatings, self-lubricating composite coatings with addition of WS2, MoS2, and h-BN were fabricated using laser cladding. The morphology, microstructure, microhardness, and tribological properties of the Mo2FeB2/WC self-lubricating composite coatings were investigated. The results indicated that the addition of WS2, MoS2, and h-BN increased the bonding properties between the coating and substrate. Sulfides and nitrides were found in the self-lubricating composite coatings; the Mo2FeB2/WC/h-BN coating exhibited a fine dendritic structure. The microhardnesses of the Mo2FeB2/WC, Mo2FeB2/WC/WS2, Mo2FeB2/WC/MoS2, and Mo2FeB2/WC/h-BN coatings were 1591.3 HV0.5, 1345.6 HV0.5, 1378.9 HV0.5, and 1415.3 HV0.5, respectively. After the addition of WS2, MoS2, and h-BN, the coefficients of friction decreased by 9.09%, 15.15%, and 30.30%, respectively; the corresponding wear rates decreased by 10.80%, 19.03%, and 30.97%, respectively. The self-lubricating phases significantly improved the tribological properties of the Mo2FeB2/WC coating. The main wear mechanisms of the Mo2FeB2/WC coating were adhesive and mild oxidative wear; the wear mechanisms after the addition of WS2, MoS2, and h-BN were abrasive and oxidative wear. The wear debris was powder-like for the Mo2FeB2/WC/WS2 and Mo2FeB2/WC/MoS2 coatings and flake-like for the Mo2FeB2/WC/h-BN coating. The lubricating transfer film caused an improvement in the tribological properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加WS2、MoS2和h-BN的Mo2FeB2/WC自润滑复合涂层的微观结构和摩擦学特性比较研究
为了提高Mo2FeB2/WC涂层的摩擦学性能和使用寿命,采用激光熔覆法制备了WS2、MoS2和h-BN自润滑复合涂层。研究了Mo2FeB2/WC自润滑复合涂层的形貌、显微组织、显微硬度和摩擦学性能。结果表明,WS2、MoS2和h-BN的加入提高了涂层与基体之间的结合性能。自润滑复合涂层中含有硫化物和氮化物;Mo2FeB2/WC/h-BN涂层呈现良好的枝晶结构。Mo2FeB2/WC、Mo2FeB2/WC/WS2、Mo2FeB2/WC/MoS2和Mo2FeB2/WC/h-BN涂层的显微硬度分别为1591.3 HV0.5、1345.6 HV0.5、1378.9 HV0.5和1415.3 HV0.5。添加WS2、MoS2和h-BN后,摩擦系数分别降低了9.09%、15.15%和30.30%;相应的磨损率分别降低了10.80%、19.03%和30.97%。自润滑相显著改善了Mo2FeB2/WC涂层的摩擦学性能。Mo2FeB2/WC涂层的主要磨损机制为粘结磨损和轻度氧化磨损;添加WS2、MoS2和h-BN后的磨损机制主要为磨粒磨损和氧化磨损。Mo2FeB2/WC/WS2和Mo2FeB2/WC/MoS2涂层的磨损碎屑呈粉末状,Mo2FeB2/WC/h-BN涂层的磨损碎屑呈片状。润滑转移膜改善了摩擦磨损性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Materials and Design is a multidisciplinary journal that publishes original research reports, review articles, and express communications. It covers a wide range of topics including the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, as well as the design of materials and engineering systems, and their applications in technology. The journal aims to integrate various disciplines such as materials science, engineering, physics, and chemistry. By exploring themes from materials to design, it seeks to uncover connections between natural and artificial materials, and between experimental findings and theoretical models. Manuscripts submitted to Materials and Design are expected to offer elements of discovery and surprise, contributing to new insights into the architecture and function of matter.
期刊最新文献
Programmable and multistable metamaterials made of precisely tailored bistable cells Direct 3D microprinting of highly conductive gold structures via localized electrodeposition Understanding the breakup behaviors of liquid jet in gas atomization for powder production Precision control of oxygen content in CP-Ti for ultra-high strength through titanium oxide decomposition: An in-situ study The role of yttrium micro-alloying on microstructure evolution and high-temperature mechanical properties of additively manufactured Inconel 718
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1