{"title":"Programmable and multistable metamaterials made of precisely tailored bistable cells","authors":"Kuan Liang, Yaguang Wang, Yangjun Luo, Akihiro Takezawa, Xiaopeng Zhang, Zhan Kang","doi":"10.1016/j.matdes.2023.111810","DOIUrl":null,"url":null,"abstract":"This study proposes a systematic inverse design framework for constructing multistable mechanical metamaterials with programmable gradients. Herein, we designed the tailored bistable cells with precisely controlled maximum instability forces through the topology optimization approach. Then, the designed bistable structures were programmed to construct the multistable mechanical metamaterials with different target gradient snapping sequences and deformation models. Consequently, the simulation and experimental results showed the feasibility of the design method, which successfully produced two- and three-dimensional mechanical metamaterial structures with different functions. Finally, we verified the expected deformation sequences and multistable behaviors of mechanical metamaterials by testing the designed specimens prepared via additive manufacturing. Overall, our findings show that the proposed design strategy offers a new paradigm for developing precisely tailored and programmable mechanical metamaterials.","PeriodicalId":101318,"journal":{"name":"MATERIALS & DESIGN","volume":"114 1","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATERIALS & DESIGN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.matdes.2023.111810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This study proposes a systematic inverse design framework for constructing multistable mechanical metamaterials with programmable gradients. Herein, we designed the tailored bistable cells with precisely controlled maximum instability forces through the topology optimization approach. Then, the designed bistable structures were programmed to construct the multistable mechanical metamaterials with different target gradient snapping sequences and deformation models. Consequently, the simulation and experimental results showed the feasibility of the design method, which successfully produced two- and three-dimensional mechanical metamaterial structures with different functions. Finally, we verified the expected deformation sequences and multistable behaviors of mechanical metamaterials by testing the designed specimens prepared via additive manufacturing. Overall, our findings show that the proposed design strategy offers a new paradigm for developing precisely tailored and programmable mechanical metamaterials.
期刊介绍:
Materials and Design is a multidisciplinary journal that publishes original research reports, review articles, and express communications. It covers a wide range of topics including the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, as well as the design of materials and engineering systems, and their applications in technology.
The journal aims to integrate various disciplines such as materials science, engineering, physics, and chemistry. By exploring themes from materials to design, it seeks to uncover connections between natural and artificial materials, and between experimental findings and theoretical models. Manuscripts submitted to Materials and Design are expected to offer elements of discovery and surprise, contributing to new insights into the architecture and function of matter.