Çağrı Erdem, Benedikte Wallace, Kyrre Glette, Alexander Refsum Jensenius
{"title":"Tool or Actor? Expert Improvisers' Evaluation of a Musical AI “Toddler”","authors":"Çağrı Erdem, Benedikte Wallace, Kyrre Glette, Alexander Refsum Jensenius","doi":"10.1162/comj_a_00657","DOIUrl":null,"url":null,"abstract":"Abstract In this article we introduce the coadaptive audiovisual instrument CAVI. This instrument uses deep learning to generate control signals based on muscle and motion data of a performer's actions. The generated signals control time-based live sound-processing modules. How does a performer perceive such an instrument? Does it feel like a machine learning-based musical tool? Or is it an actor with the potential to become a musical partner? We report on an evaluation of CAVI after it had been used in two public performances. The evaluation is based on interviews with the performers, audience questionnaires, and the creator's self-analysis. Our findings suggest that the perception of CAVI as a tool or actor correlates with the performer's sense of agency. The perceived agency changes throughout a performance based on several factors, including perceived musical coordination, the balance between surprise and familiarity, a “common sense,” and the physical characteristics of the performance setting.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"57 25","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/comj_a_00657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article we introduce the coadaptive audiovisual instrument CAVI. This instrument uses deep learning to generate control signals based on muscle and motion data of a performer's actions. The generated signals control time-based live sound-processing modules. How does a performer perceive such an instrument? Does it feel like a machine learning-based musical tool? Or is it an actor with the potential to become a musical partner? We report on an evaluation of CAVI after it had been used in two public performances. The evaluation is based on interviews with the performers, audience questionnaires, and the creator's self-analysis. Our findings suggest that the perception of CAVI as a tool or actor correlates with the performer's sense of agency. The perceived agency changes throughout a performance based on several factors, including perceived musical coordination, the balance between surprise and familiarity, a “common sense,” and the physical characteristics of the performance setting.
期刊介绍:
Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound.
Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include:
In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music
Reports on products of interest, such as new audio and MIDI software and hardware
Interviews with leading composers of computer music
Announcements of and reports on conferences and courses in the United States and abroad
Publication, event, and recording reviews
Tutorials, letters, and editorials
Numerous graphics, photographs, scores, algorithms, and other illustrations.