Tool or Actor? Expert Improvisers' Evaluation of a Musical AI “Toddler”

IF 0.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Music Journal Pub Date : 2023-11-10 DOI:10.1162/comj_a_00657
Çağrı Erdem, Benedikte Wallace, Kyrre Glette, Alexander Refsum Jensenius
{"title":"Tool or Actor? Expert Improvisers' Evaluation of a Musical AI “Toddler”","authors":"Çağrı Erdem, Benedikte Wallace, Kyrre Glette, Alexander Refsum Jensenius","doi":"10.1162/comj_a_00657","DOIUrl":null,"url":null,"abstract":"Abstract In this article we introduce the coadaptive audiovisual instrument CAVI. This instrument uses deep learning to generate control signals based on muscle and motion data of a performer's actions. The generated signals control time-based live sound-processing modules. How does a performer perceive such an instrument? Does it feel like a machine learning-based musical tool? Or is it an actor with the potential to become a musical partner? We report on an evaluation of CAVI after it had been used in two public performances. The evaluation is based on interviews with the performers, audience questionnaires, and the creator's self-analysis. Our findings suggest that the perception of CAVI as a tool or actor correlates with the performer's sense of agency. The perceived agency changes throughout a performance based on several factors, including perceived musical coordination, the balance between surprise and familiarity, a “common sense,” and the physical characteristics of the performance setting.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"57 25","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/comj_a_00657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article we introduce the coadaptive audiovisual instrument CAVI. This instrument uses deep learning to generate control signals based on muscle and motion data of a performer's actions. The generated signals control time-based live sound-processing modules. How does a performer perceive such an instrument? Does it feel like a machine learning-based musical tool? Or is it an actor with the potential to become a musical partner? We report on an evaluation of CAVI after it had been used in two public performances. The evaluation is based on interviews with the performers, audience questionnaires, and the creator's self-analysis. Our findings suggest that the perception of CAVI as a tool or actor correlates with the performer's sense of agency. The perceived agency changes throughout a performance based on several factors, including perceived musical coordination, the balance between surprise and familiarity, a “common sense,” and the physical characteristics of the performance setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工具还是演员?即兴专家对音乐人工智能“蹒跚学步”的评价
本文介绍了一种自适应视听仪器CAVI。该仪器使用深度学习来生成基于表演者动作的肌肉和运动数据的控制信号。生成的信号控制基于时间的实时声音处理模块。演奏者如何看待这样的乐器?它感觉像是一个基于机器学习的音乐工具吗?还是一个有潜力成为音乐搭档的演员?我们报告了CAVI在两次公开演出中使用后的评估。评估是基于对表演者的采访、观众的问卷调查和创作者的自我分析。我们的研究结果表明,CAVI作为工具或演员的感知与表演者的代理感相关。在整个表演过程中,感知代理的变化基于几个因素,包括感知到的音乐协调性、惊喜与熟悉之间的平衡、“常识”和表演环境的物理特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Music Journal
Computer Music Journal 工程技术-计算机:跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound. Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include: In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music Reports on products of interest, such as new audio and MIDI software and hardware Interviews with leading composers of computer music Announcements of and reports on conferences and courses in the United States and abroad Publication, event, and recording reviews Tutorials, letters, and editorials Numerous graphics, photographs, scores, algorithms, and other illustrations.
期刊最新文献
Finite State Machines with Data Paths in Visual Languages for Music Generating Sonic Phantoms with Quadratic Difference Tone Spectrum Synthesis Embodying Spatial Sound Synthesis with AI in Two Compositions for Instruments and 3-D Electronics Cocreative Interaction: Somax2 and the REACH Project Live Coding Machine Learning: Finding the Moments of Intervention in Autonomous Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1