{"title":"Transient replica symmetry breaking in Brillouin random fiber lasers","authors":"Liang Zhang, Jilin Zhang, Fufei Pang, Tingyun Wang, Liang Chen, Xiaoyi Bao","doi":"10.1186/s43074-023-00107-2","DOIUrl":null,"url":null,"abstract":"Abstract Replica symmetry breaking (RSB), as a featured phase transition between paramagnetic and spin glass state in magnetic systems, has been predicted and validated among random laser-based complex systems, which involves numerous random modes interplayed via gain competition and exhibits disorder-induced frustration for glass behavior. However, the dynamics of RSB phase transition involving micro-state evolution of a photonic complex system have never been well investigated. Here, we report experimental evidence of transient RSB in a Brillouin random fiber laser (BRFL)-based photonic system through high-resolution unveiling of random laser mode landscape based on heterodyne technique. Thanks to the prolonged lifetime of activated random modes in BRFLs, an elaborated mapping of time-dependent statistics of the Parisi overlap parameter in both time and frequency domains was timely resolved, attributing to a compelling analogy between the transient RSB dynamics and the random mode evolution. These findings highlight that BRFL-based systems with the flexible harness of a customized photonic complex platform allow a superb opportunity for time-resolved transient RSB observation, opening new avenues in exploring fundamentals and application of complex systems and nonlinear phenomena.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"14 1","pages":"0"},"PeriodicalIF":15.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-023-00107-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Replica symmetry breaking (RSB), as a featured phase transition between paramagnetic and spin glass state in magnetic systems, has been predicted and validated among random laser-based complex systems, which involves numerous random modes interplayed via gain competition and exhibits disorder-induced frustration for glass behavior. However, the dynamics of RSB phase transition involving micro-state evolution of a photonic complex system have never been well investigated. Here, we report experimental evidence of transient RSB in a Brillouin random fiber laser (BRFL)-based photonic system through high-resolution unveiling of random laser mode landscape based on heterodyne technique. Thanks to the prolonged lifetime of activated random modes in BRFLs, an elaborated mapping of time-dependent statistics of the Parisi overlap parameter in both time and frequency domains was timely resolved, attributing to a compelling analogy between the transient RSB dynamics and the random mode evolution. These findings highlight that BRFL-based systems with the flexible harness of a customized photonic complex platform allow a superb opportunity for time-resolved transient RSB observation, opening new avenues in exploring fundamentals and application of complex systems and nonlinear phenomena.