Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera

IF 15.7 Q1 OPTICS PhotoniX Pub Date : 2024-08-19 DOI:10.1186/s43074-024-00139-2
Wenwu Chen, Shijie Feng, Wei Yin, Yixuan Li, Jiaming Qian, Qian Chen, Chao Zuo
{"title":"Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera","authors":"Wenwu Chen, Shijie Feng, Wei Yin, Yixuan Li, Jiaming Qian, Qian Chen, Chao Zuo","doi":"10.1186/s43074-024-00139-2","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-024-00139-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习支持的时间超分辨多路复用条纹投影轮廓测量法:使用低速相机进行高速 kHz 3D 成像
成像传感器和数字光投影技术的最新进展促进了三维光学传感技术的快速发展,使复杂形状物体的三维表面能够以高分辨率和高精度被捕捉到。然而,由于固有的同步图案投影和图像采集机制,基于传统结构光或条纹投影轮廓仪(FPP)的三维成像方法的时间分辨率仍然局限于原生探测器的帧速率。在这项工作中,我们展示了一种新的三维成像方法,即深度学习支持的多路复用 FPP(DLMFPP),它能以接近一个数量级的高速三维帧速率实现高分辨率和高速三维成像,而传统的低速相机则无法实现。DLMFPP 将时间信息编码在一个复用的条纹图案中,利用嵌入了傅立叶变换、相移和集合学习的深度神经网络来分解图案和分析单独的条纹,与传统的计算成像技术相比,DLMFPP 提供了高信噪比和可立即实施的解决方案。我们通过测量不同类型的瞬态场景(包括旋转的风扇叶片和玩具枪发射的子弹)来演示这种方法,使用的相机频率约为 100 Hz。实验结果表明,DLMFPP 可将慢速扫描相机在成本和空间分辨率方面的已知优势用于高速三维成像任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera Optical steelyard: high-resolution and wide-range refractive index sensing by synergizing Fabry–Perot interferometer with metafibers Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy Ultrahigh-fidelity full-color holographic display via color-aware optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1