Characterization and comparative assessment of bactericidal activity of carbon nanodots (CDs) and nanoparticles (CNPs) prepared from soot's of clarified butter and mustard oil, respectively

Q3 Agricultural and Biological Sciences Journal of Applied Biology and Biotechnology Pub Date : 2023-01-01 DOI:10.7324/jabb.2023.115277
Vikas Pahal, Pankaj Kumar, Rahul Kumar, Parveen Kumar, Vinod Kumar
{"title":"Characterization and comparative assessment of bactericidal activity of carbon nanodots (CDs) and nanoparticles (CNPs) prepared from soot's of clarified butter and mustard oil, respectively","authors":"Vikas Pahal, Pankaj Kumar, Rahul Kumar, Parveen Kumar, Vinod Kumar","doi":"10.7324/jabb.2023.115277","DOIUrl":null,"url":null,"abstract":"Carbon nanoparticles (CNPs) are carbon-based nanomaterial with dimensions in the range of 1–100 nm. In the present research, an ecofriendly, simple, and highly reproducible method was used to prepare the CNPs from the soot of clarified butter (carbon dots) and mustard oil (carbon nanospheres) in both pristine and oxidized forms. The obtained CNPs were subjected to various analyses such as UV-visible, Fourier transform infrared (FTIR), dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive X-ray, and X-ray diffraction (XRD). The analyses demonstrate that the size of butter-originated CNPs was found in the ranges of 10–90 nm (raw) and 5–20 nm (oxidized), whereas, in the case of mustard oil-originated CNPs, the size was observed in the ranges of 100–150 nm (raw) and 50–80 nm (oxidized). As per zeta potential results, the net surface charges on CNPs were observed as −9.05 and −14.6 mV in the case of raw and oxidized CNPs from butter, respectively, and −12.7 and −20.1 mV in the case of raw and oxidized CNPs from mustard oil, respectively. XRD results showed the typical graphitic crystalline nature of both kinds of CNPs irrespective of their initial raw material. FTIR results confirmed hydroxyl, carboxyl, carbonyl, and amide groups on CNPs that help in their capping and stabilization in the solvent media. Five bacterial strains, Staphylococcus aureus , Escherichia coli , Staphylococcus epidermidis , Klebsiella pneumoniae , and Moraxella catarrhalis , were used to assess the bactericidal potential of synthesized CNPs using agar-well and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2 H - tetrazolium-5-carboxanilide-colorimetric methods. Butter-mediated oxidized CNPs were the most effective bactericidal agent against all the bacterial strains compared to mustard-originated CNPs. Furthermore, CNPs-mediated toxicity towards bacteria was both size and concentration dependent. Staphylococcus aureus and S. epidermidis were the most sensitive [minimum inhibitory concentration (MIC): 800 µg/ml] and resistant (MIC: 2.0 mg/ml) bacteria, respectively, towards CNPs-mediated toxicity. The synthesized CNPs were devoid of any metallic impurities and hence worthy of being used in various applications like imaging, labeling, sensor-technology, and environment monitoring and as an antibacterial agent.","PeriodicalId":15032,"journal":{"name":"Journal of Applied Biology and Biotechnology","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2023.115277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Carbon nanoparticles (CNPs) are carbon-based nanomaterial with dimensions in the range of 1–100 nm. In the present research, an ecofriendly, simple, and highly reproducible method was used to prepare the CNPs from the soot of clarified butter (carbon dots) and mustard oil (carbon nanospheres) in both pristine and oxidized forms. The obtained CNPs were subjected to various analyses such as UV-visible, Fourier transform infrared (FTIR), dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive X-ray, and X-ray diffraction (XRD). The analyses demonstrate that the size of butter-originated CNPs was found in the ranges of 10–90 nm (raw) and 5–20 nm (oxidized), whereas, in the case of mustard oil-originated CNPs, the size was observed in the ranges of 100–150 nm (raw) and 50–80 nm (oxidized). As per zeta potential results, the net surface charges on CNPs were observed as −9.05 and −14.6 mV in the case of raw and oxidized CNPs from butter, respectively, and −12.7 and −20.1 mV in the case of raw and oxidized CNPs from mustard oil, respectively. XRD results showed the typical graphitic crystalline nature of both kinds of CNPs irrespective of their initial raw material. FTIR results confirmed hydroxyl, carboxyl, carbonyl, and amide groups on CNPs that help in their capping and stabilization in the solvent media. Five bacterial strains, Staphylococcus aureus , Escherichia coli , Staphylococcus epidermidis , Klebsiella pneumoniae , and Moraxella catarrhalis , were used to assess the bactericidal potential of synthesized CNPs using agar-well and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2 H - tetrazolium-5-carboxanilide-colorimetric methods. Butter-mediated oxidized CNPs were the most effective bactericidal agent against all the bacterial strains compared to mustard-originated CNPs. Furthermore, CNPs-mediated toxicity towards bacteria was both size and concentration dependent. Staphylococcus aureus and S. epidermidis were the most sensitive [minimum inhibitory concentration (MIC): 800 µg/ml] and resistant (MIC: 2.0 mg/ml) bacteria, respectively, towards CNPs-mediated toxicity. The synthesized CNPs were devoid of any metallic impurities and hence worthy of being used in various applications like imaging, labeling, sensor-technology, and environment monitoring and as an antibacterial agent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分别由澄清黄油和芥末油烟灰制备的碳纳米点(CDs)和纳米颗粒(CNPs)的杀菌活性表征和比较评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biology and Biotechnology
Journal of Applied Biology and Biotechnology Agricultural and Biological Sciences-Food Science
CiteScore
1.80
自引率
0.00%
发文量
181
期刊最新文献
Characterization and comparative assessment of bactericidal activity of carbon nanodots (CDs) and nanoparticles (CNPs) prepared from soot's of clarified butter and mustard oil, respectively Screening and isolation of potential nitrogen-fixing Enterobacter sp. GG1 from mangrove soil with its accelerated impact on green chili plant (Capsicum frutescens L.) growth amelioration Synthesis of bio-nanofiber from pectin/polyvinyl alcohol for therapeutic application Letter regarding “Elastase and COVID-19 relationship, and potential natural resource as elastase inhibitors: A comprehensive review” Bacillus paralicheniformis (OQ202112) - Mediated biodiesel production using groundnut husk: A sustainable approach for bioenergy generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1