A discussion on the limitations of image analysis for determining bubble size in industrial flotation when using algorithms successfully tested from idealized images

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL Physicochemical Problems of Mineral Processing Pub Date : 2023-10-25 DOI:10.37190/ppmp/174474
Luis Vinnett
{"title":"A discussion on the limitations of image analysis for determining bubble size in industrial flotation when using algorithms successfully tested from idealized images","authors":"Luis Vinnett","doi":"10.37190/ppmp/174474","DOIUrl":null,"url":null,"abstract":"This paper evaluates the capacity of an automated algorithm to detect bubbles and estimate bubble size (Sauter mean diameter, D32) from images recorded in industrial flotation machines. The algorithm is previously calibrated from laboratory images. The D32 results are compared with semi-automated estimations, which are used as \"ground truth\". Although the automated algorithm is reliable to estimate bubble size at laboratory scale, a significant bias is observed from industrial images for D32 > 3.0-4.0 mm. This uncertainty is caused by the presence of small and large bubbles in the same population, with large bubbles forming complex clusters and being observed incomplete, limited by the region of interest. Flotation columns are more prone to this condition, which hinders the estimation of Sauter diameters. The results show the need for bubble size databases that include industrial images. As several image processing tools are currently available, software calibration from ideal bubble images (synthetic or from laboratory rigs) will mostly lead to biased D32 estimations in industrial flotation machines.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"65 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ppmp/174474","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper evaluates the capacity of an automated algorithm to detect bubbles and estimate bubble size (Sauter mean diameter, D32) from images recorded in industrial flotation machines. The algorithm is previously calibrated from laboratory images. The D32 results are compared with semi-automated estimations, which are used as "ground truth". Although the automated algorithm is reliable to estimate bubble size at laboratory scale, a significant bias is observed from industrial images for D32 > 3.0-4.0 mm. This uncertainty is caused by the presence of small and large bubbles in the same population, with large bubbles forming complex clusters and being observed incomplete, limited by the region of interest. Flotation columns are more prone to this condition, which hinders the estimation of Sauter diameters. The results show the need for bubble size databases that include industrial images. As several image processing tools are currently available, software calibration from ideal bubble images (synthetic or from laboratory rigs) will mostly lead to biased D32 estimations in industrial flotation machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
讨论了在工业浮选中,当使用从理想图像成功测试的算法时,图像分析确定气泡大小的局限性
本文评估了从工业浮选机记录的图像中检测气泡和估计气泡大小(Sauter平均直径,D32)的自动算法的能力。该算法以前是根据实验室图像校准的。将D32结果与半自动估计进行比较,后者被用作“基础真值”。尽管自动化算法在实验室规模上估计气泡大小是可靠的,但从D32 >3.0 - -4.0毫米。这种不确定性是由同一种群中大小气泡的存在引起的,大气泡形成复杂的簇,并且被观察到不完整,受到感兴趣区域的限制。浮选柱更容易出现这种情况,这阻碍了对直径的估计。结果表明需要包含工业图像的气泡大小数据库。由于目前有几种图像处理工具可用,从理想气泡图像(合成或实验室设备)进行软件校准,在工业浮选机中,D32估计大多会有偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
期刊最新文献
Studying on mineralogical and petrological characteristics of Gara Djebilet oolitic iron ore, Tindouf (Algeria) Optimization of flotation conditions in the beneficiation of PGMs tailings On the selection of the coarsest size class in flotation rate characterizations Biochars from wood biomass as effective methylene blue adsorbents Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1