A discussion on the limitations of image analysis for determining bubble size in industrial flotation when using algorithms successfully tested from idealized images
{"title":"A discussion on the limitations of image analysis for determining bubble size in industrial flotation when using algorithms successfully tested from idealized images","authors":"Luis Vinnett","doi":"10.37190/ppmp/174474","DOIUrl":null,"url":null,"abstract":"This paper evaluates the capacity of an automated algorithm to detect bubbles and estimate bubble size (Sauter mean diameter, D32) from images recorded in industrial flotation machines. The algorithm is previously calibrated from laboratory images. The D32 results are compared with semi-automated estimations, which are used as \"ground truth\". Although the automated algorithm is reliable to estimate bubble size at laboratory scale, a significant bias is observed from industrial images for D32 > 3.0-4.0 mm. This uncertainty is caused by the presence of small and large bubbles in the same population, with large bubbles forming complex clusters and being observed incomplete, limited by the region of interest. Flotation columns are more prone to this condition, which hinders the estimation of Sauter diameters. The results show the need for bubble size databases that include industrial images. As several image processing tools are currently available, software calibration from ideal bubble images (synthetic or from laboratory rigs) will mostly lead to biased D32 estimations in industrial flotation machines.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"65 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ppmp/174474","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper evaluates the capacity of an automated algorithm to detect bubbles and estimate bubble size (Sauter mean diameter, D32) from images recorded in industrial flotation machines. The algorithm is previously calibrated from laboratory images. The D32 results are compared with semi-automated estimations, which are used as "ground truth". Although the automated algorithm is reliable to estimate bubble size at laboratory scale, a significant bias is observed from industrial images for D32 > 3.0-4.0 mm. This uncertainty is caused by the presence of small and large bubbles in the same population, with large bubbles forming complex clusters and being observed incomplete, limited by the region of interest. Flotation columns are more prone to this condition, which hinders the estimation of Sauter diameters. The results show the need for bubble size databases that include industrial images. As several image processing tools are currently available, software calibration from ideal bubble images (synthetic or from laboratory rigs) will mostly lead to biased D32 estimations in industrial flotation machines.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.