Yang Bai, Mengxu Xu, Weixiang Wen, Shifei Zhu, Weichen Mo, Pingke Yan
{"title":"Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface","authors":"Yang Bai, Mengxu Xu, Weixiang Wen, Shifei Zhu, Weichen Mo, Pingke Yan","doi":"10.37190/ppmp/176510","DOIUrl":null,"url":null,"abstract":"Surface tension measurements and molecular dynamics (MD) simulations were used to explore the flotation foam properties and self-aggregation behaviors of dodecylamine (DDA)/octanol (OCT) mixtures formed with different mole ratios at the air/liquid interface. Based on the surface and thermodynamic parameters, the DDA/OCT mixtures exhibited greater interfacial activities and adsorption capacities than their individual components. The MD simulations showed that DDA and OCT were aggregated through hydrogen bonding, coulombic forces and hydrophobic association. OCT was inserted into the DDA adsorption layer, causing the alkyl chains of both DDA and OCT to extend from water to air at varying heights and angles. The addition of OCT improved the hydration of the amino groups and reduced the overall number of hydrogen bonds. The stability of the flotation foam decreased, and the high viscosity and difficult defoaming of the DDA flotation foam were significantly improved. When the DDA/OCT mole ratio was 2:1, the included angle formed between the alkyl chains and the interface was maximized, leading to enhanced compatibility among the alkyl chains, and the hydrogen bond energy was relatively large, which showed a strong synergistic effect. The MD simulation findings were consistent with the results obtained from the lepidolite flotation and surface tension experiments conducted in this study; our results could provide a theoretical foundation for the selection of superior mixed collectors and frothers.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"9 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/176510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface tension measurements and molecular dynamics (MD) simulations were used to explore the flotation foam properties and self-aggregation behaviors of dodecylamine (DDA)/octanol (OCT) mixtures formed with different mole ratios at the air/liquid interface. Based on the surface and thermodynamic parameters, the DDA/OCT mixtures exhibited greater interfacial activities and adsorption capacities than their individual components. The MD simulations showed that DDA and OCT were aggregated through hydrogen bonding, coulombic forces and hydrophobic association. OCT was inserted into the DDA adsorption layer, causing the alkyl chains of both DDA and OCT to extend from water to air at varying heights and angles. The addition of OCT improved the hydration of the amino groups and reduced the overall number of hydrogen bonds. The stability of the flotation foam decreased, and the high viscosity and difficult defoaming of the DDA flotation foam were significantly improved. When the DDA/OCT mole ratio was 2:1, the included angle formed between the alkyl chains and the interface was maximized, leading to enhanced compatibility among the alkyl chains, and the hydrogen bond energy was relatively large, which showed a strong synergistic effect. The MD simulation findings were consistent with the results obtained from the lepidolite flotation and surface tension experiments conducted in this study; our results could provide a theoretical foundation for the selection of superior mixed collectors and frothers.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.