Adapting remote photoplethysmography for Indonesian subjects: an examination of diverse rPPG techniques

Istighfariza Aprini, Martin Clinton Tosima Manullang
{"title":"Adapting remote photoplethysmography for Indonesian subjects: an examination of diverse rPPG techniques","authors":"Istighfariza Aprini, Martin Clinton Tosima Manullang","doi":"10.35313/jitel.v3.i3.2023.165-180","DOIUrl":null,"url":null,"abstract":"Vital sign measurements are essential in intensive care patients, such as in the ICU or emergency department, and also for newborns or prenatal babies. The duty nurse usually monitors these vital signs by manually writing down the patient's condition on a large piece of paper in front of the patient's room. The lack of nurses can hinder the process of monitoring patient vital signs. However, since the COVID-19 pandemic, people have limited contact with their surroundings, making measuring vital signs with contact uncomfortable and unhygienic. The typical non-contact method for measuring heart rate is the remote photoplethysmography (rPPG) technique. In this study, we proposed to assess the performance of various rPPG algorithms on the Indonesian subjects dataset. The algorithms used are CHROM, GREEN, ICA, LGI, PBV, PCA, and POS on 70 pieces of data. Based on the test results with three types of evaluation metrics, namely MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and Bland Altman, it is found that the measurement results with the best performance POS algorithm with a low prediction error rate with the resulting MAE value of 2.59 and RMSE of 4.65.","PeriodicalId":476867,"journal":{"name":"Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35313/jitel.v3.i3.2023.165-180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vital sign measurements are essential in intensive care patients, such as in the ICU or emergency department, and also for newborns or prenatal babies. The duty nurse usually monitors these vital signs by manually writing down the patient's condition on a large piece of paper in front of the patient's room. The lack of nurses can hinder the process of monitoring patient vital signs. However, since the COVID-19 pandemic, people have limited contact with their surroundings, making measuring vital signs with contact uncomfortable and unhygienic. The typical non-contact method for measuring heart rate is the remote photoplethysmography (rPPG) technique. In this study, we proposed to assess the performance of various rPPG algorithms on the Indonesian subjects dataset. The algorithms used are CHROM, GREEN, ICA, LGI, PBV, PCA, and POS on 70 pieces of data. Based on the test results with three types of evaluation metrics, namely MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and Bland Altman, it is found that the measurement results with the best performance POS algorithm with a low prediction error rate with the resulting MAE value of 2.59 and RMSE of 4.65.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适应印尼受试者的远程光电容积脉搏图:不同rPPG技术的检验
生命体征测量对于重症监护患者,如ICU或急诊科,以及新生儿或产前婴儿至关重要。值班护士通常通过在病人房间前的一张大纸上手工写下病人的病情来监测这些生命体征。护士的缺乏会阻碍对病人生命体征的监测。然而,自2019冠状病毒病大流行以来,人们与周围环境的接触有限,使得通过接触测量生命体征不舒服和不卫生。典型的非接触测量心率的方法是远程光电容积脉搏波描记(rPPG)技术。在这项研究中,我们提出评估各种rPPG算法在印度尼西亚主题数据集上的性能。在70条数据上使用了CHROM、GREEN、ICA、LGI、PBV、PCA和POS算法。基于MAE (Mean Absolute Error)、RMSE (Root Mean Square Error)和Bland Altman三种评价指标的测试结果,发现性能最好的POS算法的测量结果预测错误率较低,所得的MAE值为2.59,RMSE为4.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementasi tapis Kalman pada tongkat adaptif untuk deteksi objek disabilitas netra berbasis LiDAR Desain dan implementasi rangkaian konverter jenis non-isolated buck and boost DC-DC Desain dan implementasi modul praktikum SCADA untuk otomasi gedung berbasis Ethernet Adapting remote photoplethysmography for Indonesian subjects: an examination of diverse rPPG techniques Sistem kontrol dan monitoring alat pakan ikan otomatis tenaga surya berbasis Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1