Viktorya Rstakyan, Liana Mkhitaryan, Mikayel Torosyan, Zaruhi Karabekian, Gohar Sevoyan, Marina Aghayan, Miguel A. Rodríguez
{"title":"Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography","authors":"Viktorya Rstakyan, Liana Mkhitaryan, Mikayel Torosyan, Zaruhi Karabekian, Gohar Sevoyan, Marina Aghayan, Miguel A. Rodríguez","doi":"10.4028/p-ily5jt","DOIUrl":null,"url":null,"abstract":"In this study, we used Stereolithography to develop tricalcium phosphate-based scaffolds. The feedstock for the process consisted of a UV-curable resin, synthetic tricalcium phosphate, and silicon oxide. The viscosity and curability of the resins are carefully controlled to enable the fabrication of complex-shaped scaffolds. Following stereolithography, the ceramic-resin scaffolds were heat treated. The first step was debinding process followed by a sintering step. The resulting sintered samples underwent microstructure, chemical, and mechanical analysis to assess their properties. The optimized samples were then subjected to biodegradability and cytotoxicity tests to evaluate their suitability for use as tissue engineering scaffolds.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":"107 41","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ily5jt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we used Stereolithography to develop tricalcium phosphate-based scaffolds. The feedstock for the process consisted of a UV-curable resin, synthetic tricalcium phosphate, and silicon oxide. The viscosity and curability of the resins are carefully controlled to enable the fabrication of complex-shaped scaffolds. Following stereolithography, the ceramic-resin scaffolds were heat treated. The first step was debinding process followed by a sintering step. The resulting sintered samples underwent microstructure, chemical, and mechanical analysis to assess their properties. The optimized samples were then subjected to biodegradability and cytotoxicity tests to evaluate their suitability for use as tissue engineering scaffolds.