Effect of exposure to UV-C rays on fire retardancy and adherence of curable polymer resins for application in disinfection chambers

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL Journal of Adhesion Pub Date : 2023-11-10 DOI:10.1080/00218464.2023.2281594
Mateusz Koziol, Jakub Smoleń, Piotr Olesik, Bogusław Mendala, Tomasz Pawlik, Wiktoria Wilczyńska
{"title":"Effect of exposure to UV-C rays on fire retardancy and adherence of curable polymer resins for application in disinfection chambers","authors":"Mateusz Koziol, Jakub Smoleń, Piotr Olesik, Bogusław Mendala, Tomasz Pawlik, Wiktoria Wilczyńska","doi":"10.1080/00218464.2023.2281594","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis article discusses the effect of UV-C radiation on two types of cured polymer resins, epoxy and polyester, intended for use in disinfection chambers. The exposure of the samples to UV-C rays lasted 168 h. Our evaluation covered two aspects: the effect of UV-C rays on the flammability and flame retardancy of the resins, and the effect of UV-C rays on the adhesion of the resins to the steel substrate. It was found that the applied halogen and halogen-free organophosphate agents can be used for the tested resins under UV-C conditions (e.g. disinfection chambers), and no negative impact of UV-C radiation on the performance of these flame retardants was found. The use of the tested types of resins in the form of thin coatings on a steel substrate is feasible in disinfection chambers under UV-C radiation conditions, as the obtained results indicate that the radiation did not affect the adhesion of the coating. The visible effect of UV-C radiation on both the tested resins was discoloration, giving yellow and brown colors. Our results suggest that further studies, probably involving longer UV-C exposure, would be advisable.KEYWORDS: UV-C radiationfire retardancycoat adhesionunsaturated polyester resinepoxy resindisinfection chamber AcknowledgmentsThe study was financed by the Department of Materials Technology at the Silesian University of Technology, within the frame of the statutory research grant No. 11/030/BK_23/1127 (BK-220/RM3/2023). The authors want to thank Marta Gwiaździńska and Izabela Polańska for technical support during the testing procedures.Disclosure statementNo potential conflict of interest was reported by the author(s).Author contributionsM.K.: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review & editing; J.S.: Data curation, Investigation, Visualization; P.O.: Data curation, Investigation; B.M.: Formal analysis, Funding acquisition, Methodology, Resources, Supervision, Writing – review & editing; T.P.: Formal analysis, Investigation, Methodology, Writing – review & editing; W.W.: Investigation, Methodology, VisualizationAdditional informationFundingAuthors confirm that there are no relevant financial or non-financial competing interests to report.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"108 51","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2281594","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTThis article discusses the effect of UV-C radiation on two types of cured polymer resins, epoxy and polyester, intended for use in disinfection chambers. The exposure of the samples to UV-C rays lasted 168 h. Our evaluation covered two aspects: the effect of UV-C rays on the flammability and flame retardancy of the resins, and the effect of UV-C rays on the adhesion of the resins to the steel substrate. It was found that the applied halogen and halogen-free organophosphate agents can be used for the tested resins under UV-C conditions (e.g. disinfection chambers), and no negative impact of UV-C radiation on the performance of these flame retardants was found. The use of the tested types of resins in the form of thin coatings on a steel substrate is feasible in disinfection chambers under UV-C radiation conditions, as the obtained results indicate that the radiation did not affect the adhesion of the coating. The visible effect of UV-C radiation on both the tested resins was discoloration, giving yellow and brown colors. Our results suggest that further studies, probably involving longer UV-C exposure, would be advisable.KEYWORDS: UV-C radiationfire retardancycoat adhesionunsaturated polyester resinepoxy resindisinfection chamber AcknowledgmentsThe study was financed by the Department of Materials Technology at the Silesian University of Technology, within the frame of the statutory research grant No. 11/030/BK_23/1127 (BK-220/RM3/2023). The authors want to thank Marta Gwiaździńska and Izabela Polańska for technical support during the testing procedures.Disclosure statementNo potential conflict of interest was reported by the author(s).Author contributionsM.K.: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review & editing; J.S.: Data curation, Investigation, Visualization; P.O.: Data curation, Investigation; B.M.: Formal analysis, Funding acquisition, Methodology, Resources, Supervision, Writing – review & editing; T.P.: Formal analysis, Investigation, Methodology, Writing – review & editing; W.W.: Investigation, Methodology, VisualizationAdditional informationFundingAuthors confirm that there are no relevant financial or non-financial competing interests to report.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UV-C照射对消毒室用可固化聚合物树脂阻燃性和粘附性的影响
摘要本文讨论了UV-C辐射对两种用于消毒室的固化聚合物树脂环氧树脂和聚酯树脂的影响。样品暴露在UV-C射线下的时间为168 h。我们的评估包括两个方面:UV-C射线对树脂的可燃性和阻燃性的影响,以及UV-C射线对树脂与钢基体粘附性的影响。结果表明,在UV-C条件下(如消毒室),所使用的卤素和无卤有机磷酸酯剂均可用于所测试的树脂,且未发现UV-C辐射对阻燃剂性能的负面影响。在UV-C辐射条件下的消毒室中,在钢基材上以薄涂层的形式使用所测试的类型的树脂是可行的,因为所获得的结果表明辐射不影响涂层的附着力。UV-C辐射对两种测试树脂的可见影响是变色,呈现黄色和棕色。我们的结果表明,进一步的研究,可能涉及更长时间的UV-C暴露,将是可取的。本研究由西里西亚理工大学材料技术系在法定研究拨款No. 11/030/BK_23/1127 (BK-220/RM3/2023)框架内资助。作者要感谢Marta Gwiaździńska和Izabela Polańska在测试过程中的技术支持。披露声明作者未报告潜在的利益冲突。作者贡献:概念化、形式分析、调查、方法论、项目管理、监督、验证、写作-原稿、写作-审稿编辑;j.s.:数据管理、调查、可视化;p.o.:数据管理,调查;硕士:形式分析,资金获取,方法论,资源,监督,写作-审查和编辑;T.P:形式分析,调查,方法论,写作-审查和编辑;w.w.:调查、方法、可视化附加信息资金来源作者确认没有相关的财务或非财务竞争利益需要报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
期刊最新文献
Heated press welding: analysis of the parameters influencing the mechanical strength of hybrid PA66/PA12 thermoplastic and S235 steel sheet joints Effect of exposure to UV-C rays on fire retardancy and adherence of curable polymer resins for application in disinfection chambers Adhesion property of municipal solid waste incinerator bottom ash and limestone with asphalt based on surface energy theory Experimental investigation and molecular simulation on the chemical bonding between laser-treated titanium alloy amorphous surface and epoxy adhesive Preparation of isocyanate microcapsules by complex coacervation and its application in plywood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1