Design and Thermal Analysis of Battery Thermal Management System for EV

Q3 Engineering SAE Technical Papers Pub Date : 2023-11-10 DOI:10.4271/2023-28-0087
Sadhasivam Deepan Kumar, Vishnu Ramesh Kumar R, Devadoss Dinesh Kumar, R Manojkumar, Tamilselvan A, Boopathi M, Lokesh C
{"title":"Design and Thermal Analysis of Battery Thermal Management System for EV","authors":"Sadhasivam Deepan Kumar, Vishnu Ramesh Kumar R, Devadoss Dinesh Kumar, R Manojkumar, Tamilselvan A, Boopathi M, Lokesh C","doi":"10.4271/2023-28-0087","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Controlling thermal dissipation by operating components in car batteries requires a heat management design that is of utmost importance. As a proactive cooling method, the usage of PCM (Phase Change Materials) to regulate battery module temperature is suggested. Even at lower flow rates, liquid cooling has a heat transfer coefficient that is 1.5–3 times better. The rate of global cell production has increased today from 4,000 to 100,000 cells per day. Future-proof Li (metal) battery chemistry with a 3x increase in energy density. Ineffective thermal management of the battery is the root of the issue. In order to optimise battery modules, it is important to identify likely failure modes and causes. The medium used to carry heat from the battery over its passage duration at various operating temperatures is a variety of phase-change materials. The latent heat is significant, and many vegetable fats derived from fatty acids are more effective than salt hydrates and paraffin. Melting temperatures range between -30 and 150 degrees Celsius. As a result of optimisation, the root mean square temperature between batteries was reduced by 13.3% when compared to the primary battery temperature control system. In our work, we describe techniques for enhancing temperature uniformity and cooling in a simple pack battery. Four distinct battery pack combinations are in the works. In the first concept, an intake plenum is added to a standard battery pack. In the second design, jet inlets are integrated with the inlet plenum, and multiple vortex generators are included with the inlet plenum in the third configuration. Finally, the battery pack in the fourth iteration contains an intake plenum, jet inlets, and many vortex generators. The results reveal that integrating an intake plenum, several vortex generators, and jet inlets in the same design yielded significant improvements. According to the findings, the maximum temperature of the battery pack is reduced by 5%, and the temperature differential between the greatest and lowest temperatures recorded by the battery pack is reduced by 21.5 percent.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling thermal dissipation by operating components in car batteries requires a heat management design that is of utmost importance. As a proactive cooling method, the usage of PCM (Phase Change Materials) to regulate battery module temperature is suggested. Even at lower flow rates, liquid cooling has a heat transfer coefficient that is 1.5–3 times better. The rate of global cell production has increased today from 4,000 to 100,000 cells per day. Future-proof Li (metal) battery chemistry with a 3x increase in energy density. Ineffective thermal management of the battery is the root of the issue. In order to optimise battery modules, it is important to identify likely failure modes and causes. The medium used to carry heat from the battery over its passage duration at various operating temperatures is a variety of phase-change materials. The latent heat is significant, and many vegetable fats derived from fatty acids are more effective than salt hydrates and paraffin. Melting temperatures range between -30 and 150 degrees Celsius. As a result of optimisation, the root mean square temperature between batteries was reduced by 13.3% when compared to the primary battery temperature control system. In our work, we describe techniques for enhancing temperature uniformity and cooling in a simple pack battery. Four distinct battery pack combinations are in the works. In the first concept, an intake plenum is added to a standard battery pack. In the second design, jet inlets are integrated with the inlet plenum, and multiple vortex generators are included with the inlet plenum in the third configuration. Finally, the battery pack in the fourth iteration contains an intake plenum, jet inlets, and many vortex generators. The results reveal that integrating an intake plenum, several vortex generators, and jet inlets in the same design yielded significant improvements. According to the findings, the maximum temperature of the battery pack is reduced by 5%, and the temperature differential between the greatest and lowest temperatures recorded by the battery pack is reduced by 21.5 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车电池热管理系统的设计与热分析
div class="section abstract"><div class="htmlview段落">控制汽车电池运行部件的散热需要一个热管理设计,这是至关重要的。作为一种主动冷却方法,建议使用相变材料(PCM)来调节电池模块温度。即使在较低的流量,液体冷却的传热系数是1.5-3倍。如今,全球细胞产量已从每天4000个增加到10万个。未来的锂(金属)电池化学,能量密度增加3倍。电池的热管理无效是问题的根源。为了优化电池模块,确定可能的故障模式和原因非常重要。在不同的工作温度下,用于从电池传递热量的介质是各种相变材料。潜热是显著的,许多从脂肪酸中提取的植物脂肪比盐水合物和石蜡更有效。熔化温度在-30到150摄氏度之间。优化的结果是,与主电池温度控制系统相比,电池之间的均方根温度降低了13.3%。在我们的工作中,我们描述了在一个简单的电池组中提高温度均匀性和冷却的技术。四种不同的电池组组合正在开发中。在第一个概念中,一个进气室被添加到一个标准的电池组。在第二种设计中,喷气入口与进口静压室集成,在第三种配置中,进口静压室包含多个涡发生器。最后,第四次迭代的电池组包含一个进气室、喷气入口和许多涡发生器。结果表明,在相同的设计中集成一个进气室、几个涡发生器和喷气进气道产生了显着的改进。根据研究结果,电池组的最高温度降低了5%,电池组记录的最高温度和最低温度之间的温差降低了21.5%。</div></div>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SAE Technical Papers
SAE Technical Papers Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
1487
期刊介绍: SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.
期刊最新文献
Simulation and Analysis of Quarter Car Model for Low Cost Suspension Test Rig Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs Effect of Temperature on Synchronizer Ring Performance Improvement of Torque Density Using Output Reduction Method in Transmission Revolutionizing Electric Mobility: The Latest Breakthroughs in Tyre Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1