Optimization of Spark Erosion Machining of Monel 400 Alloy for Automobile Applications

Q3 Engineering SAE Technical Papers Pub Date : 2023-11-10 DOI:10.4271/2023-28-0140
Manikandan Natarajan, Thejasree Pasupuleti, Jothi Kiruthika, V Kumar, Palanisamy D, Vamsinath Polanki
{"title":"Optimization of Spark Erosion Machining of Monel 400 Alloy for Automobile Applications","authors":"Manikandan Natarajan, Thejasree Pasupuleti, Jothi Kiruthika, V Kumar, Palanisamy D, Vamsinath Polanki","doi":"10.4271/2023-28-0140","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array. The single response analysis performed by Taguchi revealed that the process parameters can influence the output variables that are desired by the users. Through the use of the Taguchi-grey relational analysis method, the multiple aspects optimization of the process was performed. The results of the exploration divulged that the proposed method can improve the effectiveness of this process.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array. The single response analysis performed by Taguchi revealed that the process parameters can influence the output variables that are desired by the users. Through the use of the Taguchi-grey relational analysis method, the multiple aspects optimization of the process was performed. The results of the exploration divulged that the proposed method can improve the effectiveness of this process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车用蒙乃尔400合金火花腐蚀加工优化
<div class="section abstract"><div class="htmlview段落">Monel 400是一种镍合金,广泛应用于高温器件等工程领域。由于其较好的强度和热扩散,用传统方法很难加工。为了避免传统方法的缺点,人们开发了各种先进的材料去除技术。其中之一是电火花线切割加工(WEDM)。该工艺是放电法的演变。在电火花线切割加工过程中,通常要加工形状复杂的难加工材料。在本研究中,分析了该方法在Monel 400上的性能。在分析该过程的性能时,要考虑三个独立的变量:脉冲打开、施加的电流和脉冲关闭。实验采用田口的设计方法,其中包括使用L27正交阵列。田口进行的单响应分析显示,工艺参数可以影响用户期望的输出变量。运用田口灰关联分析方法,对该工艺进行了多方面优化。勘探结果表明,所提出的方法可以提高这一过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SAE Technical Papers
SAE Technical Papers Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
1487
期刊介绍: SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.
期刊最新文献
Simulation and Analysis of Quarter Car Model for Low Cost Suspension Test Rig Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs Effect of Temperature on Synchronizer Ring Performance Improvement of Torque Density Using Output Reduction Method in Transmission Revolutionizing Electric Mobility: The Latest Breakthroughs in Tyre Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1