Digital Spectrum Twins for Enhanced Spectrum Sharing and Other Radio Applications

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2023-10-24 DOI:10.1109/JRFID.2023.3327212
Serhat Tadik;Kaitlyn M. Graves;Michael A. Varner;Christopher R. Anderson;David M. Johnson;Sneha Kumar Kasera;Neal Patwari;Jacobus Van der Merwe;Gregory D. Durgin
{"title":"Digital Spectrum Twins for Enhanced Spectrum Sharing and Other Radio Applications","authors":"Serhat Tadik;Kaitlyn M. Graves;Michael A. Varner;Christopher R. Anderson;David M. Johnson;Sneha Kumar Kasera;Neal Patwari;Jacobus Van der Merwe;Gregory D. Durgin","doi":"10.1109/JRFID.2023.3327212","DOIUrl":null,"url":null,"abstract":"This paper outlines the components of a digital spectrum twin (DST) and potential application maps that can inform automated or enhanced spectrum management decisions. The DST is fundamentally a map and image database, with environmental, measurement, and prediction maps that allow parallel intelligence operations to generate useful information using aggregating rules that operate on the twin. We demonstrate several application maps generated from measured data collections and propagation modeling associated with the POWDER platform in Salt Lake City, Utah. In total, the methods of this paper provide a blueprint for generating similar DSTs in any other radio bands and regions of the world.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"376-391"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10293151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10293151/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper outlines the components of a digital spectrum twin (DST) and potential application maps that can inform automated or enhanced spectrum management decisions. The DST is fundamentally a map and image database, with environmental, measurement, and prediction maps that allow parallel intelligence operations to generate useful information using aggregating rules that operate on the twin. We demonstrate several application maps generated from measured data collections and propagation modeling associated with the POWDER platform in Salt Lake City, Utah. In total, the methods of this paper provide a blueprint for generating similar DSTs in any other radio bands and regions of the world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强频谱共享和其他无线电应用的数字频谱孪生系统
本文概述了数字频谱孪生系统(DST)的组成部分,以及可为自动或增强频谱管理决策提供信息的潜在应用地图。DST 从根本上说是一个地图和图像数据库,包含环境、测量和预测地图,允许并行智能操作,利用在孪生体上运行的聚合规则生成有用信息。我们展示了从与犹他州盐湖城 POWDER 平台相关的测量数据收集和传播建模中生成的几种应用地图。总之,本文的方法为在世界任何其他无线电频段和地区生成类似的 DST 提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
News From CRFID Meetings Guest Editorial of the Special Issue on RFID 2023, SpliTech 2023, and IEEE RFID-TA 2023 IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1