1304 Robust machine learning (ML) approach for screening microbiome ecosystem therapies (MET) drug candidates in combination with immune checkpoint inhibitors

Emmanuel Prestat, Elsa Schalck, Antoine Bonnefoy, Antoine Sabourin, Cyrielle Gasc, Carole Schwintner, Nathalie Corvaia
{"title":"1304 Robust machine learning (ML) approach for screening microbiome ecosystem therapies (MET) drug candidates in combination with immune checkpoint inhibitors","authors":"Emmanuel Prestat, Elsa Schalck, Antoine Bonnefoy, Antoine Sabourin, Cyrielle Gasc, Carole Schwintner, Nathalie Corvaia","doi":"10.1136/jitc-2023-sitc2023.1304","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3> Studies for the last 8 years have connected gut microbiome composition to ICI efficacy in cancer therapy, including pilot studies<sup>1 2</sup> demonstrating that FMT from responders to non-responders can improve response rates. However, interstudy inconsistencies were observed in microbiome signature findings<sup>3</sup> also confirmed when reprocessing internally raw data from multiple studies. It remains critical to tackle this heterogeneity to learn from stable patterns and develop a robust and reliable drug candidate screening algorithm. Hence, MaaT Pharma developed an AI framework to train models from microbiota Whole Metagenome Sequencing (WMS) datasets that predict the responder status to ICIs. We focused on performance and robustness, which was achieved by monitoring the <i>AUC</i> as a standard approach, and <i>precision</i> to control for false positive rate and to emphasize the positive classification criticality in a drug candidate selection approach. <h3>Methods</h3> We collected baseline WMS datasets from 10 cohorts in 3 ICI indications: melanoma, non-small cell lung cancer and renal cell carcinoma, along with clinical evaluation of ICI treatment. Those datasets were processed by gutPrint® <i>MgRunner</i> software, before being included in the AI framework. About 70 experiments were conducted within a Leave-One-Dataset-Out cross-validation scheme. Various factors such as taxonomic or functional inputs, dataset bias correction, data augmentation approaches, ML algorithms and data representation methods, were tested to select the top ones. Finally, a model was refit with the best performing parameters on the entire dataset, and applied to score MaaT Pharma mono-donor and healthy-pooled-donors-derived drug substances (DS). <h3>Results</h3> The best performing experiment provided models based on the XGBoost algorithm with AUCs ranging from 0.52 to 0.73 depending on the left-out cohort (average AUC = 0.65), and a precision that ranges between 0.55 and 0.81 (average precision = 0.65). Those results outperform melanoma-centered study with a comparable method.<sup>4</sup> Despite the diverse data sources and indications, the multi-indication approach surpassed the mono-indication (melanoma) training approach for predictions related to melanoma patients. Considering the scoring of DS derived from healthy donors, 73% of mono-donors and 91% of healthy-pooled-donors-derived DS were classified as ‘Responder-like’. <h3>Conclusions</h3> Present study highlights the significance of dataset size in ICI microbiota models and presents a methodology to enhance the performances of a multi-cohort-based ML approach. Conditioned to the performances we obtained, the healthy-pooled-donors-derived DS harbor a considerable ratio (91%) of ‘ICI Responder-like’, significantly higher than the mono-donor stools (73%) suggesting that pooled ecosystems from healthy donors could better convert ICI-non responders into responders. <h3>References</h3> D Davar, <i>et al.</i> ‘Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients,’ <i>Science</i>, Feb. 2021;<b>371</b>(6529):595–602, doi: 10.1126/science.abf3363. EN Baruch, <i>et al.</i> ‘Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients,’ <i>Science</i>, Dec. 2020;<b>371</b>(6529):602–609, doi: 10.1126/science.abb5920. S Wojciechowski, <i>et al.</i> ‘Machine learning on the road to unlocking microbiota’s potential for boosting immune checkpoint therapy,’ <i>International Journal of Medical Microbiology</i>, Oct. 2022;<b>312</b>(7):151560, Oct. 2022, doi: 10.1016/j.ijmm.2022.151560. KA Lee, <i>et al.</i> ‘Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma,’ <i>Nat Med</i>, 2022;<b>28</b>(3):535–544, doi: 10.1038/s41591–022-01695–5.","PeriodicalId":500964,"journal":{"name":"Regular and Young Investigator Award Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Young Investigator Award Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jitc-2023-sitc2023.1304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Studies for the last 8 years have connected gut microbiome composition to ICI efficacy in cancer therapy, including pilot studies1 2 demonstrating that FMT from responders to non-responders can improve response rates. However, interstudy inconsistencies were observed in microbiome signature findings3 also confirmed when reprocessing internally raw data from multiple studies. It remains critical to tackle this heterogeneity to learn from stable patterns and develop a robust and reliable drug candidate screening algorithm. Hence, MaaT Pharma developed an AI framework to train models from microbiota Whole Metagenome Sequencing (WMS) datasets that predict the responder status to ICIs. We focused on performance and robustness, which was achieved by monitoring the AUC as a standard approach, and precision to control for false positive rate and to emphasize the positive classification criticality in a drug candidate selection approach.

Methods

We collected baseline WMS datasets from 10 cohorts in 3 ICI indications: melanoma, non-small cell lung cancer and renal cell carcinoma, along with clinical evaluation of ICI treatment. Those datasets were processed by gutPrint® MgRunner software, before being included in the AI framework. About 70 experiments were conducted within a Leave-One-Dataset-Out cross-validation scheme. Various factors such as taxonomic or functional inputs, dataset bias correction, data augmentation approaches, ML algorithms and data representation methods, were tested to select the top ones. Finally, a model was refit with the best performing parameters on the entire dataset, and applied to score MaaT Pharma mono-donor and healthy-pooled-donors-derived drug substances (DS).

Results

The best performing experiment provided models based on the XGBoost algorithm with AUCs ranging from 0.52 to 0.73 depending on the left-out cohort (average AUC = 0.65), and a precision that ranges between 0.55 and 0.81 (average precision = 0.65). Those results outperform melanoma-centered study with a comparable method.4 Despite the diverse data sources and indications, the multi-indication approach surpassed the mono-indication (melanoma) training approach for predictions related to melanoma patients. Considering the scoring of DS derived from healthy donors, 73% of mono-donors and 91% of healthy-pooled-donors-derived DS were classified as ‘Responder-like’.

Conclusions

Present study highlights the significance of dataset size in ICI microbiota models and presents a methodology to enhance the performances of a multi-cohort-based ML approach. Conditioned to the performances we obtained, the healthy-pooled-donors-derived DS harbor a considerable ratio (91%) of ‘ICI Responder-like’, significantly higher than the mono-donor stools (73%) suggesting that pooled ecosystems from healthy donors could better convert ICI-non responders into responders.

References

D Davar, et al. ‘Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients,’ Science, Feb. 2021;371(6529):595–602, doi: 10.1126/science.abf3363. EN Baruch, et al. ‘Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients,’ Science, Dec. 2020;371(6529):602–609, doi: 10.1126/science.abb5920. S Wojciechowski, et al. ‘Machine learning on the road to unlocking microbiota’s potential for boosting immune checkpoint therapy,’ International Journal of Medical Microbiology, Oct. 2022;312(7):151560, Oct. 2022, doi: 10.1016/j.ijmm.2022.151560. KA Lee, et al. ‘Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma,’ Nat Med, 2022;28(3):535–544, doi: 10.1038/s41591–022-01695–5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1304:结合免疫检查点抑制剂筛选微生物组生态系统疗法(MET)候选药物的鲁棒机器学习(ML)方法
过去8年的研究已经将肠道微生物组组成与癌症治疗中的ICI疗效联系起来,包括初步研究表明,从应答者到无应答者的FMT可以提高应答率。然而,当重新处理来自多个研究的内部原始数据时,在微生物组特征发现中观察到的研究间不一致也得到了证实。解决这种异质性,从稳定的模式中学习,并开发一种强大而可靠的候选药物筛选算法仍然是至关重要的。因此,MaaT Pharma开发了一个人工智能框架来训练来自微生物群全宏基因组测序(WMS)数据集的模型,以预测对ICIs的反应状态。我们关注的是性能和鲁棒性,这是通过监测AUC作为标准方法来实现的,以及精确控制假阳性率和强调候选药物选择方法中的阳性分类临界性。方法:我们收集了来自10个队列的基线WMS数据集,包括3种ICI适应症:黑色素瘤、非小细胞肺癌和肾细胞癌,以及ICI治疗的临床评估。这些数据集在被纳入人工智能框架之前,由gutPrint®MgRunner软件处理。在Leave-One-Dataset-Out交叉验证方案下进行了大约70个实验。我们测试了各种因素,如分类或功能输入、数据集偏差校正、数据增强方法、ML算法和数据表示方法,以选择最重要的因素。最后,利用整个数据集上表现最好的参数重构模型,并应用于MaaT Pharma单供体和健康池供体衍生原料药(DS)的评分。结果基于XGBoost算法的模型,根据遗漏队列的不同,AUC范围为0.52 ~ 0.73(平均AUC = 0.65),精度范围为0.55 ~ 0.81(平均精度= 0.65)。这些结果优于用可比方法进行的以黑色素瘤为中心的研究尽管有不同的数据来源和适应症,但在黑色素瘤患者相关预测方面,多适应症方法优于单适应症(黑色素瘤)训练方法。考虑到来自健康供者的DS评分,73%的单一供者和91%的健康汇集供者衍生的DS被归类为“类似响应者”。本研究强调了ICI微生物群模型中数据集大小的重要性,并提出了一种方法来提高基于多队列的机器学习方法的性能。根据我们获得的表现,健康供者衍生的DS具有相当大的“ICI响应样”比例(91%),显著高于单一供者粪便(73%),这表明来自健康供者的汇集生态系统可以更好地将ICI无应答者转化为应答者。D Davar, et .“粪便微生物群移植克服了黑色素瘤患者对抗pd -1治疗的耐药性,”Science, 2021年2月;371(6529):595-602,doi: 10.1126/ Science .abf3363。EN Baruch等。“粪便微生物群移植促进免疫治疗难治性黑色素瘤患者的反应,”科学,2020年12月;371(6529):602-609,doi: 10.1126/ Science .abb5920。S Wojciechowski, et .“机器学习在解锁微生物群潜力的道路上,促进免疫检查点治疗,”国际医学微生物学杂志,2022年10月;312(7):151560,2022年10月,doi: 10.1016/ j.j jmm.2022.151560。KA Lee,等。“跨队列肠道微生物组与晚期黑色素瘤免疫检查点抑制剂反应的关联”,《中华医学杂志》,2022;28(3):535-544,doi: 10.1038/ s41591-022-01695-5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1455 Characterization of gene expression signatures of tumor immunogenicity and cellular proliferation from murine cancer models grownin vitroandin vivo 1193 Synergistic targeting of multiple activating pathways with natural killer cell engagers 1413 Immunogenicity of SARS-CoV-2 mRNA vaccines in individuals with thymic epithelial tumors 1150 DM005, an EGFR × MET bispecific antibody-drug conjugate, showed robust anti-tumor activity in PDX models 1274 Infliximab for decompensated diabetes following immune checkpoint inhibitor therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1