Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models

Arash Salehpour
{"title":"Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models","authors":"Arash Salehpour","doi":"10.5815/ijisa.2023.05.02","DOIUrl":null,"url":null,"abstract":"This paper analyses the performance of machine learning models in forecasting the Tehran Stock Exchange's automobile index. Historical daily data from 2018-2022 was pre-processed and used to train Linear Regression (LR), Support Vector Regression (SVR), and Random Forest (RF) models. The models were evaluated on mean absolute error, mean squared error, root mean squared error and R2 score metrics. The results indicate that LR and SVR outperformed RF in predicting automobile stock prices, with LR achieving the lowest error scores. This demonstrates the capability of machine learning techniques to model complex, nonlinear relationships in financial time series data. This pioneering study on a previously unexplored dataset provides empirical evidence that LR and SVR can reliably forecast automobile stock market prices, holding promise for investing applications.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.05.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyses the performance of machine learning models in forecasting the Tehran Stock Exchange's automobile index. Historical daily data from 2018-2022 was pre-processed and used to train Linear Regression (LR), Support Vector Regression (SVR), and Random Forest (RF) models. The models were evaluated on mean absolute error, mean squared error, root mean squared error and R2 score metrics. The results indicate that LR and SVR outperformed RF in predicting automobile stock prices, with LR achieving the lowest error scores. This demonstrates the capability of machine learning techniques to model complex, nonlinear relationships in financial time series data. This pioneering study on a previously unexplored dataset provides empirical evidence that LR and SVR can reliably forecast automobile stock market prices, holding promise for investing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习模型预测德黑兰证券交易所的汽车股票价格指数
本文分析了机器学习模型在预测德黑兰证券交易所汽车指数方面的性能。对2018-2022年的历史每日数据进行预处理,并用于训练线性回归(LR)、支持向量回归(SVR)和随机森林(RF)模型。采用平均绝对误差、均方误差、均方根误差和R2评分指标对模型进行评价。结果表明,LR和SVR在预测汽车股价方面优于RF,其中LR的误差得分最低。这证明了机器学习技术在金融时间序列数据中建模复杂、非线性关系的能力。这项开创性的研究基于以前未开发的数据集,提供了经验证据,证明LR和SVR可以可靠地预测汽车股票市场价格,为投资应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1