An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering

Aayush Juyal, Nandini Sharma, Pisati Rithya, Sandeep Kumar
{"title":"An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering","authors":"Aayush Juyal, Nandini Sharma, Pisati Rithya, Sandeep Kumar","doi":"10.5815/ijisa.2023.05.03","DOIUrl":null,"url":null,"abstract":"Data Structures and Algorithms (DSA) is a widely explored domain in the world of computer science. With it being a crucial topic during an interview for a software engineer, it is a topic not to take lightly. There are various platforms available to understand a particular DSA, several programming problems, and its implementation. Hacckerank, LeetCode, GeeksForGeeks (GFG), and Codeforces are popular platforms that offer a vast collection of programming problems to enhance skills. However, with the huge content of DSA available, it is challenging for users to identify which one among all to focus on after going through the required domain. This work aims to use a Content-based filtering (CBF) recommendation engine to suggest users programming-based questions related to different DSAs such as arrays, linked lists, trees, graphs, etc. The recommendations are generated using the concept of Natural Language Processing (NLP). The data set consists of approximately 500 problems. Each problem is represented by the features such as problem statement, related topics, level of difficulty, and platform link. Standard measures like cosine similarity, accuracy, precision, and F1-score are used to determine the proportion of correctly recommended problems. The percentages indicate how well the system performed regarding that evaluation. The result shows that CBF achieves an accuracy of 83 %, a precision of 83 %, a recall of 80%, and an F1-score of 80%. This recommendation system is deployed on a web application that provides a suitable user interface allowing the user to interact with other features. With this, a whole E-learning application is built to aid potential software engineers and computer science students. In the future, two more recommendation systems, Collaborative Filtering (CF) and Hybrid systems, can be implemented to make a comparison and decide which is most suitable for the given problem statement.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.05.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Data Structures and Algorithms (DSA) is a widely explored domain in the world of computer science. With it being a crucial topic during an interview for a software engineer, it is a topic not to take lightly. There are various platforms available to understand a particular DSA, several programming problems, and its implementation. Hacckerank, LeetCode, GeeksForGeeks (GFG), and Codeforces are popular platforms that offer a vast collection of programming problems to enhance skills. However, with the huge content of DSA available, it is challenging for users to identify which one among all to focus on after going through the required domain. This work aims to use a Content-based filtering (CBF) recommendation engine to suggest users programming-based questions related to different DSAs such as arrays, linked lists, trees, graphs, etc. The recommendations are generated using the concept of Natural Language Processing (NLP). The data set consists of approximately 500 problems. Each problem is represented by the features such as problem statement, related topics, level of difficulty, and platform link. Standard measures like cosine similarity, accuracy, precision, and F1-score are used to determine the proportion of correctly recommended problems. The percentages indicate how well the system performed regarding that evaluation. The result shows that CBF achieves an accuracy of 83 %, a precision of 83 %, a recall of 80%, and an F1-score of 80%. This recommendation system is deployed on a web application that provides a suitable user interface allowing the user to interact with other features. With this, a whole E-learning application is built to aid potential software engineers and computer science students. In the future, two more recommendation systems, Collaborative Filtering (CF) and Hybrid systems, can be implemented to make a comparison and decide which is most suitable for the given problem statement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于内容的过滤推荐数据结构和算法问题的增强方法
数据结构与算法(DSA)是计算机科学领域中一个被广泛探索的领域。在软件工程师的面试中,它是一个至关重要的话题,这是一个不能掉以轻心的话题。有许多平台可用于理解特定的DSA、一些编程问题及其实现。Hacckerank、LeetCode、GeeksForGeeks (GFG)和Codeforces是提供大量编程问题以提高技能的流行平台。然而,由于DSA的内容非常丰富,用户在浏览了所需的领域后,很难确定应该关注哪一个。这项工作旨在使用基于内容的过滤(CBF)推荐引擎向用户推荐与不同的dsa(如数组、链表、树、图等)相关的基于编程的问题。这些建议是使用自然语言处理(NLP)的概念生成的。该数据集由大约500个问题组成。每个问题都由问题陈述、相关主题、难度等级和平台链接等特征表示。诸如余弦相似性、准确性、精密度和f1分数等标准度量用于确定正确推荐问题的比例。百分比表示系统对该评估的执行情况。结果表明,CBF的准确率为83%,精密度为83%,召回率为80%,f1分数为80%。该推荐系统部署在一个web应用程序上,该应用程序提供了一个合适的用户界面,允许用户与其他功能交互。有了这个,一个完整的电子学习应用程序被建立起来,以帮助潜在的软件工程师和计算机科学专业的学生。在未来,两种推荐系统,协同过滤(CF)和混合系统,可以实现进行比较,并决定哪一个最适合给定的问题陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1