James G. C. Ball, Sebastian H. M. Hickman, Tobias D. Jackson, Xian Jing Koay, James Hirst, William Jay, Matthew Archer, Mélaine Aubry‐Kientz, Grégoire Vincent, David A. Coomes
{"title":"Accurate delineation of individual tree crowns in tropical forests from aerial <scp>RGB</scp> imagery using Mask <scp>R‐CNN</scp>","authors":"James G. C. Ball, Sebastian H. M. Hickman, Tobias D. Jackson, Xian Jing Koay, James Hirst, William Jay, Matthew Archer, Mélaine Aubry‐Kientz, Grégoire Vincent, David A. Coomes","doi":"10.1002/rse2.332","DOIUrl":null,"url":null,"abstract":"Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2 , which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km 2 of aerial images. The skill of the automatic method in delineating unseen test trees was good ( F 1 score = 0.64) and for the tallest category of trees was excellent ( F 1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2 .","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"222 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rse2.332","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Tropical forests are a major component of the global carbon cycle and home to two‐thirds of terrestrial species. Upper‐canopy trees store the majority of forest carbon and can be vulnerable to drought events and storms. Monitoring their growth and mortality is essential to understanding forest resilience to climate change, but in the context of forest carbon storage, large trees are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial photographs provide spectral and textural information to discriminate between tree crowns in diverse, complex tropical canopies, potentially opening the door to landscape monitoring of large trees. Here we describe a new deep convolutional neural network method, Detectree2 , which builds on the Mask R‐CNN computer vision framework to recognize the irregular edges of individual tree crowns from airborne RGB imagery. We trained and evaluated this model with 3797 manually delineated tree crowns at three sites in Malaysian Borneo and one site in French Guiana. As an example application, we combined the delineations with repeat lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and mortality of upper‐canopy trees. Detectree2 delineated 65 000 upper‐canopy trees across 14 km 2 of aerial images. The skill of the automatic method in delineating unseen test trees was good ( F 1 score = 0.64) and for the tallest category of trees was excellent ( F 1 score = 0.74). As predicted from previous field studies, we found that growth rate declined with tree height and tall trees had higher mortality rates than intermediate‐size trees. Our approach demonstrates that deep learning methods can automatically segment trees in widely accessible RGB imagery. This tool (provided as an open‐source Python package) has many potential applications in forest ecology and conservation, from estimating carbon stocks to monitoring forest phenology and restoration. Python package available to install at https://github.com/PatBall1/Detectree2 .
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.