J. M. Wolstenholme, F. Cooper, R. E. Thomas, J. Ahmed, K. J. Parsons, D. R. Parsons
{"title":"Automated identification of hedgerows and hedgerow gaps using deep learning","authors":"J. M. Wolstenholme, F. Cooper, R. E. Thomas, J. Ahmed, K. J. Parsons, D. R. Parsons","doi":"10.1002/rse2.432","DOIUrl":null,"url":null,"abstract":"Hedgerows are a key component of the UK landscape that form boundaries, borders and limits of land whilst providing vital landscape‐scale ecological connectivity for a range of organisms. They are diverse habitats in the agricultural landscape providing a range of ecosystem services. Poorly managed hedgerows often present with gaps, reducing their ecological connectivity, resulting in fragmented habitats. However, hedgerow gap frequency and spatial distributions are often unquantified at the landscape‐scale. Here we present a novel methodology based on deep learning (DL) that is coupled with high‐resolution aerial imagery. We demonstrate how this provides a route towards a rapid, adaptable, accurate assessment of hedgerow and gap abundance at such scales, with minimal training data. We present the training and development of a DL model using the U‐Net architecture to automatically identify hedgerows across the East Riding of Yorkshire (ERY) in the UK and demonstrate the ability of the model to estimate hedgerow gap types, lengths and their locations. Our method was both time efficient and accurate, processing an area of 2479 km<jats:sup>2</jats:sup> in 32 h with an overall accuracy of 92.4%. The substantive results allow us to estimate that in the ERY alone, there were 3982 ± 302 km of hedgerows and 2865 ± 217 km of hedgerow gaps (with 339 km classified as for access). Our approach and study show that hedgerows and gaps can be extracted from true colour aerial imagery without the requirement of elevation data and can produce meaningful results that lead to the identification of prioritisation areas for hedgerow gap infilling, replanting and restoration. Such replanting could significantly contribute towards national tree planting goals and meeting net zero targets in a changing climate.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"51 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.432","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hedgerows are a key component of the UK landscape that form boundaries, borders and limits of land whilst providing vital landscape‐scale ecological connectivity for a range of organisms. They are diverse habitats in the agricultural landscape providing a range of ecosystem services. Poorly managed hedgerows often present with gaps, reducing their ecological connectivity, resulting in fragmented habitats. However, hedgerow gap frequency and spatial distributions are often unquantified at the landscape‐scale. Here we present a novel methodology based on deep learning (DL) that is coupled with high‐resolution aerial imagery. We demonstrate how this provides a route towards a rapid, adaptable, accurate assessment of hedgerow and gap abundance at such scales, with minimal training data. We present the training and development of a DL model using the U‐Net architecture to automatically identify hedgerows across the East Riding of Yorkshire (ERY) in the UK and demonstrate the ability of the model to estimate hedgerow gap types, lengths and their locations. Our method was both time efficient and accurate, processing an area of 2479 km2 in 32 h with an overall accuracy of 92.4%. The substantive results allow us to estimate that in the ERY alone, there were 3982 ± 302 km of hedgerows and 2865 ± 217 km of hedgerow gaps (with 339 km classified as for access). Our approach and study show that hedgerows and gaps can be extracted from true colour aerial imagery without the requirement of elevation data and can produce meaningful results that lead to the identification of prioritisation areas for hedgerow gap infilling, replanting and restoration. Such replanting could significantly contribute towards national tree planting goals and meeting net zero targets in a changing climate.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.