Automated identification of hedgerows and hedgerow gaps using deep learning

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2025-02-15 DOI:10.1002/rse2.432
J. M. Wolstenholme, F. Cooper, R. E. Thomas, J. Ahmed, K. J. Parsons, D. R. Parsons
{"title":"Automated identification of hedgerows and hedgerow gaps using deep learning","authors":"J. M. Wolstenholme, F. Cooper, R. E. Thomas, J. Ahmed, K. J. Parsons, D. R. Parsons","doi":"10.1002/rse2.432","DOIUrl":null,"url":null,"abstract":"Hedgerows are a key component of the UK landscape that form boundaries, borders and limits of land whilst providing vital landscape‐scale ecological connectivity for a range of organisms. They are diverse habitats in the agricultural landscape providing a range of ecosystem services. Poorly managed hedgerows often present with gaps, reducing their ecological connectivity, resulting in fragmented habitats. However, hedgerow gap frequency and spatial distributions are often unquantified at the landscape‐scale. Here we present a novel methodology based on deep learning (DL) that is coupled with high‐resolution aerial imagery. We demonstrate how this provides a route towards a rapid, adaptable, accurate assessment of hedgerow and gap abundance at such scales, with minimal training data. We present the training and development of a DL model using the U‐Net architecture to automatically identify hedgerows across the East Riding of Yorkshire (ERY) in the UK and demonstrate the ability of the model to estimate hedgerow gap types, lengths and their locations. Our method was both time efficient and accurate, processing an area of 2479 km<jats:sup>2</jats:sup> in 32 h with an overall accuracy of 92.4%. The substantive results allow us to estimate that in the ERY alone, there were 3982 ± 302 km of hedgerows and 2865 ± 217 km of hedgerow gaps (with 339 km classified as for access). Our approach and study show that hedgerows and gaps can be extracted from true colour aerial imagery without the requirement of elevation data and can produce meaningful results that lead to the identification of prioritisation areas for hedgerow gap infilling, replanting and restoration. Such replanting could significantly contribute towards national tree planting goals and meeting net zero targets in a changing climate.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"51 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.432","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hedgerows are a key component of the UK landscape that form boundaries, borders and limits of land whilst providing vital landscape‐scale ecological connectivity for a range of organisms. They are diverse habitats in the agricultural landscape providing a range of ecosystem services. Poorly managed hedgerows often present with gaps, reducing their ecological connectivity, resulting in fragmented habitats. However, hedgerow gap frequency and spatial distributions are often unquantified at the landscape‐scale. Here we present a novel methodology based on deep learning (DL) that is coupled with high‐resolution aerial imagery. We demonstrate how this provides a route towards a rapid, adaptable, accurate assessment of hedgerow and gap abundance at such scales, with minimal training data. We present the training and development of a DL model using the U‐Net architecture to automatically identify hedgerows across the East Riding of Yorkshire (ERY) in the UK and demonstrate the ability of the model to estimate hedgerow gap types, lengths and their locations. Our method was both time efficient and accurate, processing an area of 2479 km2 in 32 h with an overall accuracy of 92.4%. The substantive results allow us to estimate that in the ERY alone, there were 3982 ± 302 km of hedgerows and 2865 ± 217 km of hedgerow gaps (with 339 km classified as for access). Our approach and study show that hedgerows and gaps can be extracted from true colour aerial imagery without the requirement of elevation data and can produce meaningful results that lead to the identification of prioritisation areas for hedgerow gap infilling, replanting and restoration. Such replanting could significantly contribute towards national tree planting goals and meeting net zero targets in a changing climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
Impacts of fire on canopy structure and its resilience depend on successional stage in Amazonian secondary forests Automated identification of hedgerows and hedgerow gaps using deep learning Alpine greening deciphered by forest stand and structure dynamics in advancing treelines of the southwestern European Alps The secret acoustic world of leopards: A paired camera trap and bioacoustics survey facilitates the individual identification of leopards via their roars Mapping oil palm plantations and their implications on forest and great ape habitat loss in Central Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1