Phase Transition Study meets Machine Learning

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Physics Letters Pub Date : 2023-11-09 DOI:10.1088/0256-307x/40/12/122101
Yu-Gang Ma, Long-Gang Pang, Rui Wang, Kai Zhou
{"title":"Phase Transition Study meets Machine Learning","authors":"Yu-Gang Ma, Long-Gang Pang, Rui Wang, Kai Zhou","doi":"10.1088/0256-307x/40/12/122101","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning (ML) techniques have emerged as powerful tools in studying many-body complex systems, encompassing phase transitions in various domains of physics. This mini-review provides a concise yet comprehensive examination of the advancements achieved in applying ML for investigating phase transitions, with a primary emphasis on those involved in nuclear matter studies.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":" 46","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0256-307x/40/12/122101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, machine learning (ML) techniques have emerged as powerful tools in studying many-body complex systems, encompassing phase transitions in various domains of physics. This mini-review provides a concise yet comprehensive examination of the advancements achieved in applying ML for investigating phase transitions, with a primary emphasis on those involved in nuclear matter studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相变研究与机器学习
近年来,机器学习(ML)技术已成为研究多体复杂系统的强大工具,涵盖了物理各个领域的相变。这篇迷你评论提供了一个简明而全面的检查,在应用ML研究相变方面取得的进展,主要强调那些涉及核物质研究的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
期刊最新文献
Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate Pc(4457) Interpreted as a JP = 1/2+ State by D¯0Λc+(2595) – π0Pc(4312)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1