Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Physics Letters Pub Date : 2024-09-01 DOI:10.1088/0256-307x/41/9/090301
Ling-Xiao Lei, Wei-Chen Wang, Guang-Yao Huang, Shun Hu, Xi Cao, Xin-Fang Zhang, Ming-Tang Deng, Ping-Xing Chen
{"title":"Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice","authors":"Ling-Xiao Lei, Wei-Chen Wang, Guang-Yao Huang, Shun Hu, Xi Cao, Xin-Fang Zhang, Ming-Tang Deng, Ping-Xing Chen","doi":"10.1088/0256-307x/41/9/090301","DOIUrl":null,"url":null,"abstract":"The synthetic Floquet lattice, generated by multiple strong drives with mutually incommensurate frequencies, provides a powerful platform for quantum simulation of topological phenomena. In this study, we propose a 4-band tight-binding model of the Chern insulator with a Chern number <italic toggle=\"yes\">C</italic> = ±2 by coupling two layers of the half Bernevig–Hughes–Zhang lattice and subsequently mapping it onto the Floquet lattice to simulate its topological properties. To determine the Chern number of our Floquet-version model, we extend the energy pumping method proposed by Martin <italic toggle=\"yes\">et al.</italic> [2017 <italic toggle=\"yes\">Phys. Rev. X</italic> <bold>7</bold> 041008] and the topological oscillation method introduced by Boyers <italic toggle=\"yes\">et al.</italic> [2020 <italic toggle=\"yes\">Phys. Rev. Lett.</italic> <bold>125</bold> 160505], followed by numerical simulations for both methodologies. The simulation results demonstrate the successful extraction of the Chern number using either of these methods, providing an excellent prediction of the phase diagram that closely aligns with the theoretical one derived from the original bilayer half Bernevig–Hughes–Zhang model. Finally, we briefly discuss a potential experimental implementation for our model. Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms, thereby paving the way for constructing a more universal simulator for non-interacting topological quantum states and advancing our understanding of these intriguing phenomena.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"255 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/9/090301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthetic Floquet lattice, generated by multiple strong drives with mutually incommensurate frequencies, provides a powerful platform for quantum simulation of topological phenomena. In this study, we propose a 4-band tight-binding model of the Chern insulator with a Chern number C = ±2 by coupling two layers of the half Bernevig–Hughes–Zhang lattice and subsequently mapping it onto the Floquet lattice to simulate its topological properties. To determine the Chern number of our Floquet-version model, we extend the energy pumping method proposed by Martin et al. [2017 Phys. Rev. X 7 041008] and the topological oscillation method introduced by Boyers et al. [2020 Phys. Rev. Lett. 125 160505], followed by numerical simulations for both methodologies. The simulation results demonstrate the successful extraction of the Chern number using either of these methods, providing an excellent prediction of the phase diagram that closely aligns with the theoretical one derived from the original bilayer half Bernevig–Hughes–Zhang model. Finally, we briefly discuss a potential experimental implementation for our model. Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms, thereby paving the way for constructing a more universal simulator for non-interacting topological quantum states and advancing our understanding of these intriguing phenomena.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在合成浮凸晶格上模拟 C = ±2 的切尔绝缘体
由频率互不相称的多个强驱动力产生的合成 Floquet 晶格为拓扑现象的量子模拟提供了一个强大的平台。在本研究中,我们通过耦合半贝内维格-赫希斯-张晶格的两层,提出了一个切尔诺数为 C = ±2 的切尔绝缘体的 4 带紧束缚模型,并随后将其映射到 Floquet 晶格上,以模拟其拓扑特性。为了确定我们的 Floquet 版本模型的切尔数,我们扩展了 Martin 等人提出的能量泵方法[2017 Phys. Rev. X 7 041008]和 Boyers 等人提出的拓扑振荡方法[2020 Phys.模拟结果表明,无论采用上述哪种方法,都能成功地提取出切尔诺数,并提供了极好的相图预测,与最初的双层半贝内维格-赫希斯-张模型得出的理论相图非常吻合。最后,我们简要讨论了我们模型的潜在实验实现方法。我们的工作展示了利用量子计算平台模拟复杂拓扑物质的巨大潜力,从而为构建更通用的非相互作用拓扑量子态模拟器铺平了道路,并推进了我们对这些有趣现象的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
期刊最新文献
Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate Pc(4457) Interpreted as a JP = 1/2+ State by D¯0Λc+(2595) – π0Pc(4312)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1