Kingsford Sarkodie Obeng Kwakye, Nouman Rasool, Kwame Oteng Gyasi, Joseph Abroquah, Mubarak Sani Ellis, Ohemeng Lord Owusu, Abdul-Rahman Ahmed, Jerry John Kponyo
{"title":"Design and Analysis of a Low-Profile Dual-Band Circularly Polarized Monopole Antenna Based on Characteristic Mode Analysis","authors":"Kingsford Sarkodie Obeng Kwakye, Nouman Rasool, Kwame Oteng Gyasi, Joseph Abroquah, Mubarak Sani Ellis, Ohemeng Lord Owusu, Abdul-Rahman Ahmed, Jerry John Kponyo","doi":"10.1155/2023/7855907","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a simple dual-band circularly polarized monopole antenna using characteristic mode analysis. First, a dual-band elliptically polarized “L”-shaped monopole antenna with a partial ground is designed; then, a rectangular stub and a parasitic structure on the ground plane are implemented to achieve dual-band CP operation. To enhance impedance bandwidth and generate circular polarization in the upper band, the rectangular stub is attached to the “L”-shaped strip. The parasitic structure is employed for simultaneous dual-band CP radiation. Characteristic mode analysis is undertaken to predict the performance of the antenna before excitation. The modal analysis which is undertaken before excitation shows the natural modes that can be excited by the antenna structure to generate a dual-band CP response. The analysis gives approximate bandwidths that can be achieved by the antenna even before excitation. The overall dimension of the antenna <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mtext mathvariant=\"italic\">is</mtext> <mtext> </mtext> <mn>0.379</mn> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>×</mo> <mn>0.379</mn> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>×</mo> <mn>0.015</mn> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> , where <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> is the corresponding free-space wavelength at 5.7 GHz. The measured -10 dB impedance bandwidth (ZBW) is realized to be 75.9% (4.5 GHz–10 GHz). The measured 3 dB axial ratio bandwidths (ARBW) at the lower and upper bands are 6% (5.6 GHz–5.95 GHz) and 28% (6.65 GHz–8.82 GHz), respectively. The proposed antenna features a simple and compact structure for Wi-Fi, WLAN, WiMAX, and C band applications.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7855907","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design of a simple dual-band circularly polarized monopole antenna using characteristic mode analysis. First, a dual-band elliptically polarized “L”-shaped monopole antenna with a partial ground is designed; then, a rectangular stub and a parasitic structure on the ground plane are implemented to achieve dual-band CP operation. To enhance impedance bandwidth and generate circular polarization in the upper band, the rectangular stub is attached to the “L”-shaped strip. The parasitic structure is employed for simultaneous dual-band CP radiation. Characteristic mode analysis is undertaken to predict the performance of the antenna before excitation. The modal analysis which is undertaken before excitation shows the natural modes that can be excited by the antenna structure to generate a dual-band CP response. The analysis gives approximate bandwidths that can be achieved by the antenna even before excitation. The overall dimension of the antenna , where is the corresponding free-space wavelength at 5.7 GHz. The measured -10 dB impedance bandwidth (ZBW) is realized to be 75.9% (4.5 GHz–10 GHz). The measured 3 dB axial ratio bandwidths (ARBW) at the lower and upper bands are 6% (5.6 GHz–5.95 GHz) and 28% (6.65 GHz–8.82 GHz), respectively. The proposed antenna features a simple and compact structure for Wi-Fi, WLAN, WiMAX, and C band applications.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.