Deep Regression Network for Single-Image Super-Resolution Based on Down- and Upsampling with RCA Blocks

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES National Academy Science Letters Pub Date : 2023-10-07 DOI:10.1007/s40009-023-01353-5
S. Karthick, N. Muthukumaran
{"title":"Deep Regression Network for Single-Image Super-Resolution Based on Down- and Upsampling with RCA Blocks","authors":"S. Karthick,&nbsp;N. Muthukumaran","doi":"10.1007/s40009-023-01353-5","DOIUrl":null,"url":null,"abstract":"<div><p>A regression network is created to transform low-resolution (LR) images into high-resolution (HR) images. The LR images are processed using a deep regression approach for producing HR images. LR images are initially used as input, and the raw input image is subsequently enlarged to adjust the image size without changing the information. An image’s physical size can be altered without altering the pixel proportions. After that, a regression network produces high-quality images after resizing low-quality ones. According to the simulation study, the proposed method achieves 98% accuracy, 0.02% error, 97% precision, and 94% specificity.</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"47 3","pages":"279 - 283"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-023-01353-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A regression network is created to transform low-resolution (LR) images into high-resolution (HR) images. The LR images are processed using a deep regression approach for producing HR images. LR images are initially used as input, and the raw input image is subsequently enlarged to adjust the image size without changing the information. An image’s physical size can be altered without altering the pixel proportions. After that, a regression network produces high-quality images after resizing low-quality ones. According to the simulation study, the proposed method achieves 98% accuracy, 0.02% error, 97% precision, and 94% specificity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 RCA 块降采样和升采样的单图像超分辨率深度回归网络
创建一个回归网络,将低分辨率(LR)图像转换为高分辨率(HR)图像。使用深度回归方法处理低分辨率图像,生成高分辨率图像。最初使用低分辨率图像作为输入,然后放大原始输入图像,在不改变信息的情况下调整图像大小。图像的物理尺寸可以在不改变像素比例的情况下改变。之后,回归网络会在调整低质量图像的大小后生成高质量图像。根据模拟研究,所提出的方法达到了 98% 的准确率、0.02% 的误差、97% 的精确度和 94% 的特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
期刊最新文献
On the Modeling of Two Covid-19 Data Sets Using a Generalized Log-Exponential Transformed Distribution Hypoestes phyllostachya Baker: A New Record of Invasive Alien Plant Species from Uttarakhand, India Comparison of Different Signal Peptide Targeting EGFP Translocation Periplasm in Salmonella Bistorta coriacea (Sam.) Yonek. & H.Ohashi (Polygonaceae): An Addition to the Angiospermic Flora of India Bacterial Wilt Caused by Ralstonia solanacearum: A Potential Threat to Brinjal Cultivated in Sikkim, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1