On the Modeling of Two Covid-19 Data Sets Using a Generalized Log-Exponential Transformed Distribution

IF 1.3 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES National Academy Science Letters Pub Date : 2024-09-19 DOI:10.1007/s40009-024-01458-5
Idika E. Okorie, Saralees Nadarajah
{"title":"On the Modeling of Two Covid-19 Data Sets Using a Generalized Log-Exponential Transformed Distribution","authors":"Idika E. Okorie,&nbsp;Saralees Nadarajah","doi":"10.1007/s40009-024-01458-5","DOIUrl":null,"url":null,"abstract":"<div><p>Many papers are being published in many different journals on modeling of Covid-19 data. The vast majority of these papers contributes much to how to handle the epidemic. On the other hand, there have been papers misusing Covid-19 data, for example, simply for mathematical/statistical innovation. In this note, we discuss one such paper where modeling of two data sets of Covid-19 were considered. We show that the data sets can be modeled better by simpler distributions, including the one-parameter exponential distribution. The better fits were shown by the Kolmogorov-Smirnov statistic, its <i>p</i>-value, probability plots and other goodness-of-fit criteria.</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"48 3","pages":"385 - 391"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-024-01458-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many papers are being published in many different journals on modeling of Covid-19 data. The vast majority of these papers contributes much to how to handle the epidemic. On the other hand, there have been papers misusing Covid-19 data, for example, simply for mathematical/statistical innovation. In this note, we discuss one such paper where modeling of two data sets of Covid-19 were considered. We show that the data sets can be modeled better by simpler distributions, including the one-parameter exponential distribution. The better fits were shown by the Kolmogorov-Smirnov statistic, its p-value, probability plots and other goodness-of-fit criteria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论使用广义对数指数变换分布对两个 Covid-19 数据集建模
在许多不同的期刊上发表了许多关于 Covid-19 数据建模的论文。这些论文中的绝大多数都对如何处理疫情做出了很大贡献。另一方面,也有一些论文滥用 Covid-19 数据,例如仅仅是为了数学/统计创新。在本说明中,我们将讨论这样一篇论文,其中考虑了 Covid-19 两组数据的建模问题。我们发现,用更简单的分布(包括单参数指数分布)对数据集进行建模效果更好。柯尔莫哥洛夫-斯米尔诺夫统计量、其 p 值、概率图和其他拟合优度标准都表明拟合效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
期刊最新文献
Performance of Non-Puddled Machine Transplanted Rice over Puddled Machine Transplanted Rice in Thanjavur District of Tamil Nadu Modified Normalized Difference Water Index Mapping of Pune District Using Google Earth Engine Immobilization of Chromium Concentration in Wheat Crop by the Application of Sugarcane Industrial Waste Characterization of Canopy Temperature in Bread Wheat Genotypes under Terminal Heat Stress Endophytic Beauveria Bassiana Isolates Induce Salinity Tolerance in Jute Plant (Corchorus Capsularis) by up-regulated Volatile Chemical Gene GDSL/KAT3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1