Luis Miguel Jiménez Gómez, Erick Lambis-Alandete, Juan D. Velásquez-Henao
{"title":"Comparación de algoritmos de Deep Learning para pronósticos en los precios de criptomonedas","authors":"Luis Miguel Jiménez Gómez, Erick Lambis-Alandete, Juan D. Velásquez-Henao","doi":"10.25100/iyc.v25i3.12845","DOIUrl":null,"url":null,"abstract":"Debido al alto atractivo de las criptomonedas, los inversionistas y los investigadores han prestado mayor atención en la previsión de los precios de las criptomonedas. Con el desarrollo metodológico del Deep Learning, la previsión de las criptomonedas ha tenido mayor importancia en los últimos años. En este artículo, se evalúan cuatro modelos de Deep Learning: RNN, LSTM, GRU y CNN-LSTM con el objetivo de evaluar el desempeño en el pronóstico del precio de cierre diario de las dos criptomonedas más importantes: Bitcoin y Ethereum. Se utilizaron métricas de análisis de desempeño como MAE, RMSE, MSE y MAPE y como métrica de ajuste, el R2. Cada modelo de Deep Learning fue optimizado a partir de un conjunto de hiperparámetros y para diferentes ventanas de tiempo. Los resultados experimentales mostraron que el algoritmo RNN tuve un rendimiento superior en la predicción del precio de Bitcoin y el algoritmo LSTM en el precio de Ethereum. Incluso, ambos métodos presentaron mejor desempeño con dos modelos de la literatura evaluados. Finalmente, la confiabilidad del pronóstico de cada modelo se evaluó analizando la autocorrelación de los errores y se encontró que los dos modelos más eficientes tienen alto poder de generalización.","PeriodicalId":159448,"journal":{"name":"INGENIERÍA Y COMPETITIVIDAD","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INGENIERÍA Y COMPETITIVIDAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25100/iyc.v25i3.12845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Debido al alto atractivo de las criptomonedas, los inversionistas y los investigadores han prestado mayor atención en la previsión de los precios de las criptomonedas. Con el desarrollo metodológico del Deep Learning, la previsión de las criptomonedas ha tenido mayor importancia en los últimos años. En este artículo, se evalúan cuatro modelos de Deep Learning: RNN, LSTM, GRU y CNN-LSTM con el objetivo de evaluar el desempeño en el pronóstico del precio de cierre diario de las dos criptomonedas más importantes: Bitcoin y Ethereum. Se utilizaron métricas de análisis de desempeño como MAE, RMSE, MSE y MAPE y como métrica de ajuste, el R2. Cada modelo de Deep Learning fue optimizado a partir de un conjunto de hiperparámetros y para diferentes ventanas de tiempo. Los resultados experimentales mostraron que el algoritmo RNN tuve un rendimiento superior en la predicción del precio de Bitcoin y el algoritmo LSTM en el precio de Ethereum. Incluso, ambos métodos presentaron mejor desempeño con dos modelos de la literatura evaluados. Finalmente, la confiabilidad del pronóstico de cada modelo se evaluó analizando la autocorrelación de los errores y se encontró que los dos modelos más eficientes tienen alto poder de generalización.