Out-of-sample error estimation for M-estimators with convex penalty

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-18 DOI:10.1093/imaiai/iaad031
Pierre C Bellec
{"title":"Out-of-sample error estimation for M-estimators with convex penalty","authors":"Pierre C Bellec","doi":"10.1093/imaiai/iaad031","DOIUrl":null,"url":null,"abstract":"Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\\boldsymbol{X},\\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\\le \\gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\\to \\gamma ^{\\prime}\\in (0,\\infty )$. General differentiable loss functions $\\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\boldsymbol{X},\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\le \gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\to \gamma ^{\prime}\in (0,\infty )$. General differentiable loss functions $\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带凸惩罚的m估计量的样本外误差估计
摘要针对高维线性回归中存在$(\boldsymbol{X},\boldsymbol{y})$且维数$p$和样本量$n$为同阶的凸惩罚正则化$M$ -估计量,提出了一种通用的样本外误差估计方法。在具有高斯协变量和独立噪声的线性模型中,样本外误差估计的相对误差为$n^{-1/2}$阶,在$p/n\le \gamma $时是非渐近的,在高维渐近区域$p/n\to \gamma ^{\prime}\in (0,\infty )$时是渐近的。一般可微损失函数$\rho $是允许的,只要损失的导数是1-Lipschitz;这包括最小二乘损失以及鲁棒损失,如Huber损失及其平滑版本。样本外误差估计的有效性要么在强凸性假设下成立,要么在稀疏性假设和受污染观测数的限制下,对l1惩罚的Huber m估计和Lasso估计成立。对于平方损失和响应中没有损坏的情况,结果还产生$n^{-1/2}$ -一致的噪声方差和泛化误差估计。这推广到任意凸惩罚和任意协方差,这是以前已知的Lasso估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1