An Investigation of Purely Azimuthal Passive Localization and Position Adjustment in Attempted UAV Formation Flights

Qi Zhang, Keren Sun, Qiaozhen Zhang
{"title":"An Investigation of Purely Azimuthal Passive Localization and Position Adjustment in Attempted UAV Formation Flights","authors":"Qi Zhang, Keren Sun, Qiaozhen Zhang","doi":"10.4236/jamp.2023.1110203","DOIUrl":null,"url":null,"abstract":"When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, this paper proposes to use pure azimuth passive positioning to adjust the position of UAVs, i.e., certain UAVs in the formation transmit signals, the rest of the UAVs receive the signals passively, and extract the orientation information from them to adjust the position of the UAVs [1] [2] [3]. In this paper, the position adjustment problem of UAVs in “circular” formation flight under three models is investigated. To address the problem of “how to obtain the position of the receiving UAV when there are two UAVs with known numbers and evenly distributed on the circumference in addition to the UAV transmitting at the known center of the circle, and the rest of the UAVs with slight deviations in their positions are receiving the signals”, two purely mathematical geometric methods, namely, triangular localization method and polar co-ordinate method, are proposed respectively. We have determined the position of the receiving UAV; we have used the exhaustive method and the construction and disproof method to solve the problem of “how many UAVs are needed to transmit signals in order to realize the effective positioning of the UAVs when it is known that a certain UAV with a slight deviation in its position receives the signals emitted by two UAVs at the same time”, and the results show that: in addition to the known signals emitted by two UAVs, it is also necessary to transmit the signals emitted by two UAVs. The results show that in addition to the known two UAVs transmitting signals, two additional UAVs are required to transmit signals for precise po-sitioning. When the position of UAVs has deviation at the initial moment, the ideal approximation method and the target delimitation method are pro-posed, and the target of nine UAVs uniformly distributed on a circle of a spe-cific radius is achieved through several adjustments, after which the ad-vantages and disadvantages of each model are analyzed, and suggestions for improvement are put forward. The purely azimuthal passive localization method and the constructed model approach proposed in this paper can be extended to other fields, such as spacecraft formations in space and battle-ship formations at sea, as well as other formation flight position adjustment problems.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1110203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, this paper proposes to use pure azimuth passive positioning to adjust the position of UAVs, i.e., certain UAVs in the formation transmit signals, the rest of the UAVs receive the signals passively, and extract the orientation information from them to adjust the position of the UAVs [1] [2] [3]. In this paper, the position adjustment problem of UAVs in “circular” formation flight under three models is investigated. To address the problem of “how to obtain the position of the receiving UAV when there are two UAVs with known numbers and evenly distributed on the circumference in addition to the UAV transmitting at the known center of the circle, and the rest of the UAVs with slight deviations in their positions are receiving the signals”, two purely mathematical geometric methods, namely, triangular localization method and polar co-ordinate method, are proposed respectively. We have determined the position of the receiving UAV; we have used the exhaustive method and the construction and disproof method to solve the problem of “how many UAVs are needed to transmit signals in order to realize the effective positioning of the UAVs when it is known that a certain UAV with a slight deviation in its position receives the signals emitted by two UAVs at the same time”, and the results show that: in addition to the known signals emitted by two UAVs, it is also necessary to transmit the signals emitted by two UAVs. The results show that in addition to the known two UAVs transmitting signals, two additional UAVs are required to transmit signals for precise po-sitioning. When the position of UAVs has deviation at the initial moment, the ideal approximation method and the target delimitation method are pro-posed, and the target of nine UAVs uniformly distributed on a circle of a spe-cific radius is achieved through several adjustments, after which the ad-vantages and disadvantages of each model are analyzed, and suggestions for improvement are put forward. The purely azimuthal passive localization method and the constructed model approach proposed in this paper can be extended to other fields, such as spacecraft formations in space and battle-ship formations at sea, as well as other formation flight position adjustment problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机编队飞行中纯方位被动定位与位置调整研究
无人机编队飞行时,保持编队状态,不受外界电磁波信号干扰至关重要。为了保持编队,本文提出采用纯方位角被动定位来调整无人机位置,即编队中部分无人机发射信号,其余无人机被动接收信号,并从中提取方向信息来调整无人机位置[1][2][3]。本文研究了三种模型下无人机“圆形”编队飞行的位置调整问题。针对“在圆周上有两架已知数量且均匀分布的无人机,除一架在已知圆心发射外,其余位置偏差较小的无人机都在接收信号”的问题,分别提出了三角形定位法和极坐标法两种纯数学几何方法,即三角定位法和极坐标法。我们已经确定了接收无人机的位置;我们使用穷举方法和建设和反证的方法来解决这个问题“有多少无人机需要为了实现传输信号的有效定位无人机众所周知,某无人机时略有偏差,其位置接收两个无人机同时”发出的信号,结果表明:除了已知的两个无人机发出的信号,这也是必要的传输两种无人机发出的信号。结果表明,除了已知的两架无人机发射信号外,还需要另外两架无人机发射信号以实现精确定位。在初始时刻无人机位置有偏差时,提出了理想逼近法和目标标定法,通过多次调整,得到了均匀分布在特定半径圆上的9架无人机目标,分析了各模型的优缺点,并提出了改进建议。本文提出的纯方位被动定位方法和构造模型方法可以推广到其他领域,如空间中的航天器编队和海上的战舰编队,以及其他编队飞行位置调整问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks A Comparison of Four Methods of Estimating the Scale Parameter for the Exponential Distribution Optimal Treatment Strategy for Infectious Diseases with Two Treatment Stages Conservative Vector Fields and the Intersect Rule Dynamic Analysis of a Predator-Prey Model with Holling-II Functional Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1