High-fidelity CFD-trained machine learning to inform RANS-modelled interfacial turbulence

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2023-08-14 DOI:10.33737/jgpps/166558
Bertolotti Luc, Richard Jefferson-Loveday, Stephen Ambrose, Evgenia Korsukova
{"title":"High-fidelity CFD-trained machine learning to inform RANS-modelled interfacial turbulence","authors":"Bertolotti Luc, Richard Jefferson-Loveday, Stephen Ambrose, Evgenia Korsukova","doi":"10.33737/jgpps/166558","DOIUrl":null,"url":null,"abstract":"In aero-engine bearing chambers, two-phase shearing flows are difficult to predict as Computational Fluid Dynamics (CFD) RANS models tend to overestimate interfacial turbulence levels, leading to inaccuracies in the modelling of the flow. Turbulence damping methods have been developed to address this problem, such as Egorov’s correction, however, this method is mesh dependent and results differ considerably according to the choice of turbulence damping coefficient. In addition, this approach assumes a smooth interface between the air and oil phases when in reality they are wavy. In this paper, a Machine Learning method is used to inform an unsteady RANS turbulence modelling. It is trained using high fidelity quasi-DNS simulation data and used to provide an appropriate correction to the popular Wilcox’s standard RANS <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ω</mml:mi></mml:math></inline-formula> turbulence model. The correction consists of a machine learning-predicted source term which is used to adjust the energy budget in the RANS transport equations. Demonstration of the approach is presented for a range of interfacial flow regimes.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/166558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In aero-engine bearing chambers, two-phase shearing flows are difficult to predict as Computational Fluid Dynamics (CFD) RANS models tend to overestimate interfacial turbulence levels, leading to inaccuracies in the modelling of the flow. Turbulence damping methods have been developed to address this problem, such as Egorov’s correction, however, this method is mesh dependent and results differ considerably according to the choice of turbulence damping coefficient. In addition, this approach assumes a smooth interface between the air and oil phases when in reality they are wavy. In this paper, a Machine Learning method is used to inform an unsteady RANS turbulence modelling. It is trained using high fidelity quasi-DNS simulation data and used to provide an appropriate correction to the popular Wilcox’s standard RANS kω turbulence model. The correction consists of a machine learning-predicted source term which is used to adjust the energy budget in the RANS transport equations. Demonstration of the approach is presented for a range of interfacial flow regimes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高保真的cfd训练机器学习,以通知ranss模型的界面湍流
在航空发动机轴承室中,由于计算流体动力学(CFD) RANS模型往往会高估界面湍流水平,导致两相剪切流难以预测,从而导致流动建模不准确。为了解决这一问题,已经发展了湍流阻尼方法,例如Egorov的校正,然而,这种方法依赖于网格,并且根据湍流阻尼系数的选择结果差异很大。此外,这种方法假设空气和油相之间有一个平滑的界面,而实际上它们是波浪状的。本文采用机器学习方法建立了非定常RANS湍流模型。它使用高保真准dns模拟数据进行训练,并用于对流行的Wilcox标准RANS <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml: m>k</mml: m>< - </mml: m></mml: m>ω</mml: m></mml:math></ mml:math></inline-formula>湍流模型。修正由一个机器学习预测源项组成,该源项用于调整RANS输运方程中的能量收支。该方法的演示提出了一系列的界面流动状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1