Penetration of a Pulsed Guided Streamer Discharge into Micrometer-Sized Capillary Tubes

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2023-11-01 DOI:10.3390/plasma6040046
Samyak Jain, Peter J. Bruggeman
{"title":"Penetration of a Pulsed Guided Streamer Discharge into Micrometer-Sized Capillary Tubes","authors":"Samyak Jain, Peter J. Bruggeman","doi":"10.3390/plasma6040046","DOIUrl":null,"url":null,"abstract":"The penetration and propagation of streamers in capillary tubes is critical for applications involving the plasma-enabled disinfection of medical devices like catheters and plasma catalysis. In this study, a guided streamer is generated in a pulsed plasma jet operating in helium and impinged downstream onto a capillary tube with an inner diameter between 75 and 500 µm. The threshold voltage required to start the penetration of the guided streamer into the capillary was determined for both positive and negative polarities, and we observed a time delay between the streamer striking the top of the capillary and its penetration, which was found to be larger for the positive than the negative streamer. The observed differences can be explained by the need to sustain an electric field large enough to generate a sufficient seed electron density in the capillary to launch the streamer. The reported results suggest that the electric field at the capillary inlet is likely reduced by the formation of strong surface ionization waves for positive streamers. Nonetheless, in the case of positive streamers, the formation of surface streamers along the outside of the capillary wall can enhance streamer penetration into the capillary and the streamer propagation speed.","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plasma6040046","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The penetration and propagation of streamers in capillary tubes is critical for applications involving the plasma-enabled disinfection of medical devices like catheters and plasma catalysis. In this study, a guided streamer is generated in a pulsed plasma jet operating in helium and impinged downstream onto a capillary tube with an inner diameter between 75 and 500 µm. The threshold voltage required to start the penetration of the guided streamer into the capillary was determined for both positive and negative polarities, and we observed a time delay between the streamer striking the top of the capillary and its penetration, which was found to be larger for the positive than the negative streamer. The observed differences can be explained by the need to sustain an electric field large enough to generate a sufficient seed electron density in the capillary to launch the streamer. The reported results suggest that the electric field at the capillary inlet is likely reduced by the formation of strong surface ionization waves for positive streamers. Nonetheless, in the case of positive streamers, the formation of surface streamers along the outside of the capillary wall can enhance streamer penetration into the capillary and the streamer propagation speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲导向流光放电穿透微米级毛细管
飘带在毛细管中的渗透和传播对于涉及导管和等离子体催化等医疗设备的等离子体消毒的应用至关重要。在这项研究中,在氦中工作的脉冲等离子体射流中产生导流,并向下撞击到内径在75到500µm之间的毛细管上。在正极性和负极性的情况下,导流剂进入毛细管所需的阈值电压都是确定的,我们观察到导流剂到达毛细管顶部和渗透之间的时间延迟,发现正极性导流剂比负极性导流剂的时间延迟更大。观察到的差异可以解释为需要维持一个足够大的电场,以在毛细管中产生足够的种子电子密度来发射拖缆。报告的结果表明,毛细管入口的电场可能会因正流线形成强表面电离波而减小。然而,在正流的情况下,沿毛细管壁外侧形成的表面流可以增强流进入毛细管的穿透性和流的传播速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water A Biphasic Plasma Microreactor for Pollutants Degradation in Water Ammonia Synthesis via Membrane Dielectric-Barrier Discharge Reactor Integrated with Metal Catalyst Enhancement of W Nanoparticles Synthesis by Injecting H2 in a Magnetron Sputtering Gas Aggregation Cluster Source Operated in Ar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1