EFFECTS OF BALL MILLING AND ENZYME TREATMENT ON CELLULOSE ACETYLATION

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-09-29 DOI:10.35812/cellulosechemtechnol.2023.57.64
M. MAHBUBUR RAHMAN, MD. NURUL ANWAR KHAN, MD. KAMRUL HASAN, MAHBUB ALAM, M. MOSTAFIZUR RAHMAN, M. SHAHRIAR BASHAR, MD. AFTAB ALI SHAIKH, M. SARWAR JAHAN
{"title":"EFFECTS OF BALL MILLING AND ENZYME TREATMENT ON CELLULOSE ACETYLATION","authors":"M. MAHBUBUR RAHMAN, MD. NURUL ANWAR KHAN, MD. KAMRUL HASAN, MAHBUB ALAM, M. MOSTAFIZUR RAHMAN, M. SHAHRIAR BASHAR, MD. AFTAB ALI SHAIKH, M. SARWAR JAHAN","doi":"10.35812/cellulosechemtechnol.2023.57.64","DOIUrl":null,"url":null,"abstract":"A novel process was developed to produce cellulose acetate from bleached hardwood kraft pulp (BHKP) through ball milling and cellulase treatment. The ball milling and/or cellulase treatment of BHKP increased the esterification reaction, but enzyme treatment reduced the viscosity of the produced cellulose acetate (CA). The degree of substitution (DS) values upon acetylation were 2.26 for BHKP, 2.61 for ball-milled BHKP and 2.91 for ball milled followed by cellulase treatment of BHKP. The prepared CA was also characterized by FTIR, XRD, TGA, 1H-NMR and SEM. A strong band for –OH stretching of cellulose disappeared and created a strong band for carbonyl (C=O) group on esterification of BHKP. The crystallinity index of BHKP was 63.3%, which completely disappeared on acetylation, demonstrating the successful esterification of cellulose. The initial weight loss of cellulose acetates was lower than that of the native cellulose, as observed in TGA, indicating the acetylated samples are less hydrophilic. 1H NMR spectroscopy confirmed the complete structure of cellulose acetate.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.64","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

A novel process was developed to produce cellulose acetate from bleached hardwood kraft pulp (BHKP) through ball milling and cellulase treatment. The ball milling and/or cellulase treatment of BHKP increased the esterification reaction, but enzyme treatment reduced the viscosity of the produced cellulose acetate (CA). The degree of substitution (DS) values upon acetylation were 2.26 for BHKP, 2.61 for ball-milled BHKP and 2.91 for ball milled followed by cellulase treatment of BHKP. The prepared CA was also characterized by FTIR, XRD, TGA, 1H-NMR and SEM. A strong band for –OH stretching of cellulose disappeared and created a strong band for carbonyl (C=O) group on esterification of BHKP. The crystallinity index of BHKP was 63.3%, which completely disappeared on acetylation, demonstrating the successful esterification of cellulose. The initial weight loss of cellulose acetates was lower than that of the native cellulose, as observed in TGA, indicating the acetylated samples are less hydrophilic. 1H NMR spectroscopy confirmed the complete structure of cellulose acetate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球磨和酶处理对纤维素乙酰化的影响
研究了以漂白硬木硫酸盐浆为原料,经球磨和纤维素酶处理生产醋酸纤维素的新工艺。BHKP的球磨和/或纤维素酶处理增加了酯化反应,但酶处理降低了生产的醋酸纤维素(CA)的粘度。纤维素酶处理后乙酰化取代度为2.26,球磨取代度为2.61,球磨取代度为2.91。并用FTIR、XRD、TGA、1H-NMR和SEM对所制备的CA进行了表征。在BHKP的酯化反应中,纤维素-OH拉伸的强带消失,形成羰基(C=O)的强带。BHKP的结晶度指数为63.3%,乙酰化后结晶度完全消失,表明纤维素酯化成功。通过TGA观察,醋酸纤维素的初始失重量低于天然纤维素,表明乙酰化后的样品亲水性较差。1H核磁共振谱证实了醋酸纤维素的完整结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1