GURUMOORTHY R. RAGHAV, RAJENDRAN ASHOK KUMAR, JAWAHARLAL K. NAGARAJAN, CHANDRAN VIGNESH, FELIX SAHAYARAJ AROKIASAMY, EDI SYAFRI
{"title":"EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS","authors":"GURUMOORTHY R. RAGHAV, RAJENDRAN ASHOK KUMAR, JAWAHARLAL K. NAGARAJAN, CHANDRAN VIGNESH, FELIX SAHAYARAJ AROKIASAMY, EDI SYAFRI","doi":"10.35812/cellulosechemtechnol.2023.57.75","DOIUrl":null,"url":null,"abstract":"Organic filler-reinforced thermosetting polymer composites, when contrasted with ferrous, nonferrous, and their respective alloys, offer a broad spectrum of applications. Extensive research has been dedicated to enhancing the intrinsic mechanical and thermal properties of composite materials, with a particular focus on environmentally friendly, recyclable, and biodegradable reinforcements. As a result, the present study involved the preparation of composites by amalgamating cellulose nanofibers (CNFs) sourced from agricultural waste with epoxy to augment the characteristics of polymer composites. The CNFs-reinforced epoxy composites were fabricated via the compression molding process, incorporating filler loadings ranging from 1% to 3% by weight. A comprehensive experimental investigation was conducted on the mechanical properties (tensile, flexural, impact, and hardness) and thermal properties (heat deflection temperature) of these composites. Additionally, scanning electron microscopy was employed to examine the surface characteristics and fractured surfaces of the composites. The results revealed that, among the produced composites, those containing 2 wt% CNFs in the epoxy exhibited superior mechanical properties, outstanding tensile and flexural strengths of 42.8 ± 2 MPa and 106.1 ± 1.6 MPa, respectively, along with an impact strength of 13 ± 2.5 KJ/m² and a hardness rating of 21.2. Notably, these 2 wt% CNFs-reinforced epoxy composites exhibited a 7% increase in the heat deflection temperature, compared to the pristine epoxy resin.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"44 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.75","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Organic filler-reinforced thermosetting polymer composites, when contrasted with ferrous, nonferrous, and their respective alloys, offer a broad spectrum of applications. Extensive research has been dedicated to enhancing the intrinsic mechanical and thermal properties of composite materials, with a particular focus on environmentally friendly, recyclable, and biodegradable reinforcements. As a result, the present study involved the preparation of composites by amalgamating cellulose nanofibers (CNFs) sourced from agricultural waste with epoxy to augment the characteristics of polymer composites. The CNFs-reinforced epoxy composites were fabricated via the compression molding process, incorporating filler loadings ranging from 1% to 3% by weight. A comprehensive experimental investigation was conducted on the mechanical properties (tensile, flexural, impact, and hardness) and thermal properties (heat deflection temperature) of these composites. Additionally, scanning electron microscopy was employed to examine the surface characteristics and fractured surfaces of the composites. The results revealed that, among the produced composites, those containing 2 wt% CNFs in the epoxy exhibited superior mechanical properties, outstanding tensile and flexural strengths of 42.8 ± 2 MPa and 106.1 ± 1.6 MPa, respectively, along with an impact strength of 13 ± 2.5 KJ/m² and a hardness rating of 21.2. Notably, these 2 wt% CNFs-reinforced epoxy composites exhibited a 7% increase in the heat deflection temperature, compared to the pristine epoxy resin.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials