High-Performance Computing with the Weather Research and Forecasting System Model: A Case Study under Stable Conditions over Mexico Basin

Lourdes P. Aquino-Martinez, Beatriz Ortega Guerrero, Arturo I. Quintanar, Carlos A. Ochoa Moya, Ricardo Barrón-Fernández
{"title":"High-Performance Computing with the Weather Research and Forecasting System Model: A Case Study under Stable Conditions over Mexico Basin","authors":"Lourdes P. Aquino-Martinez, Beatriz Ortega Guerrero, Arturo I. Quintanar, Carlos A. Ochoa Moya, Ricardo Barrón-Fernández","doi":"10.13053/cys-27-3-4035","DOIUrl":null,"url":null,"abstract":"This study explores the performance of the Weather Research and Forecasting System Model (WRF v.4.0) for a winter case under stable meteorological conditions in the Mexico Basin. To evaluate the sensitivity to spatial resolution and parameterization configurations, a suite of different numerical experiments is designed to test five Planetary Boundary Layer (PBL) schemes coupled to a Surface Layer parameterization (SL) and a cloud microphysics (MP) parameterization to find an optimal configuration in terms of closeness to physical reality and computational efficiency. The WRF atmospheric dynamics core and its ancillary physics routines constitute a massively parallel FORTRAN code that runs on the Tlaloc cluster at the ICAyCC-UNAM with optimized MPICH software. Two model performance metrics are used: 1) Taylor statistics to measure the distance between simulations and observed meteorological fields (near-surface and upper-level temperature and winds), and 2) CPU execution time. Results show that the Mellor-Yamada-Janjic (M) scheme performs best near the surface at 2.0 km horizontal resolution. However, the Yonsei University (Y) PBL scheme outperforms the M scheme when looking at temperature vertical profiles at the exact horizontal resolution. Both PBL schemes show negligible CPU execution time differences.","PeriodicalId":333706,"journal":{"name":"Computación Y Sistemas","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computación Y Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/cys-27-3-4035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the performance of the Weather Research and Forecasting System Model (WRF v.4.0) for a winter case under stable meteorological conditions in the Mexico Basin. To evaluate the sensitivity to spatial resolution and parameterization configurations, a suite of different numerical experiments is designed to test five Planetary Boundary Layer (PBL) schemes coupled to a Surface Layer parameterization (SL) and a cloud microphysics (MP) parameterization to find an optimal configuration in terms of closeness to physical reality and computational efficiency. The WRF atmospheric dynamics core and its ancillary physics routines constitute a massively parallel FORTRAN code that runs on the Tlaloc cluster at the ICAyCC-UNAM with optimized MPICH software. Two model performance metrics are used: 1) Taylor statistics to measure the distance between simulations and observed meteorological fields (near-surface and upper-level temperature and winds), and 2) CPU execution time. Results show that the Mellor-Yamada-Janjic (M) scheme performs best near the surface at 2.0 km horizontal resolution. However, the Yonsei University (Y) PBL scheme outperforms the M scheme when looking at temperature vertical profiles at the exact horizontal resolution. Both PBL schemes show negligible CPU execution time differences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于天气研究和预报系统模型的高性能计算:以墨西哥盆地稳定条件下为例
本研究探讨了天气研究与预报系统模型(WRF v.4.0)在墨西哥盆地稳定气象条件下冬季案例的表现。为了评估对空间分辨率和参数化配置的敏感性,设计了一套不同的数值实验,测试了五种行星边界层(PBL)方案,这些方案耦合了表层参数化(SL)和云微物理(MP)参数化,以找到最接近物理现实和计算效率的最佳配置。WRF大气动力学核心及其辅助物理例程构成了一个大规模并行FORTRAN代码,该代码在ICAyCC-UNAM的Tlaloc集群上运行,并带有优化的MPICH软件。使用了两个模型性能指标:1)Taylor统计量用于测量模拟与观测到的气象场(近地面和高空温度和风)之间的距离;2)CPU执行时间。结果表明,在水平分辨率为2.0 km时,Mellor-Yamada-Janjic (M)方案在近地表表现最佳。然而,延世大学(Y) PBL方案在精确水平分辨率下观察温度垂直剖面时优于M方案。两种PBL方案的CPU执行时间差异都可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multispectral Camera Calibration Using Convolutional Neural Networks Simulation of Systems with Random Variables for Making Strategic Decisions Parametric Negations of Probability Distributions and Fuzzy Distribution Sets trACE - Anomaly Correlation Engine for Tracing the Root Cause on a Cloud based Microservice Architecture Spatiotemporal Bandits Crime Prediction from Web News Archives Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1