REINFORCEMENT OF ANTIMICROBIAL ACTIVITY AND SWELLING ABILITY OF STARCH-G-POLY 4-ACRYLAMIDOBENZOIC ACID USING CHITOSAN NANOPARTICLES

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-09-29 DOI:10.35812/cellulosechemtechnol.2023.57.71
NAHED A. ABD EL-GHANY, MOHAMED S. ABDEL AZIZ, MARWA M. ABDEL-AZIZ, ZAIN M. MAHMOUD
{"title":"REINFORCEMENT OF ANTIMICROBIAL ACTIVITY AND SWELLING ABILITY OF STARCH-G-POLY 4-ACRYLAMIDOBENZOIC ACID USING CHITOSAN NANOPARTICLES","authors":"NAHED A. ABD EL-GHANY, MOHAMED S. ABDEL AZIZ, MARWA M. ABDEL-AZIZ, ZAIN M. MAHMOUD","doi":"10.35812/cellulosechemtechnol.2023.57.71","DOIUrl":null,"url":null,"abstract":"New nanocomposites, denoted as St-g-P4ABA/CSNPs1% and St-g-P4ABA/CSNPs3%, were created by combining starch-grafted polyacrylamide benzoic acid (St-g-P4ABA) with chitosan nanoparticles (CSNPs) (1% and 3% based on graft weight). Nuclear magnetic resonance (1H NMR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were used to clarify the successful synthesis of the nanocomposite. The thermal stability of St-g-P4ABA copolymer and its degree of swellability in both water and 0.9% saline solutions significantly improved as a result of the incorporation of CSNPs, most notably in the saline solution. When compared to St-g-P4ABA, the St-g-P4ABA/CSNP composites showed better antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.71","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

New nanocomposites, denoted as St-g-P4ABA/CSNPs1% and St-g-P4ABA/CSNPs3%, were created by combining starch-grafted polyacrylamide benzoic acid (St-g-P4ABA) with chitosan nanoparticles (CSNPs) (1% and 3% based on graft weight). Nuclear magnetic resonance (1H NMR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were used to clarify the successful synthesis of the nanocomposite. The thermal stability of St-g-P4ABA copolymer and its degree of swellability in both water and 0.9% saline solutions significantly improved as a result of the incorporation of CSNPs, most notably in the saline solution. When compared to St-g-P4ABA, the St-g-P4ABA/CSNP composites showed better antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖纳米颗粒增强淀粉- g -聚4-丙烯酰胺苯甲酸的抗菌活性和溶胀能力
将淀粉接枝的聚丙烯酰胺苯甲酸(St-g-P4ABA)与壳聚糖纳米颗粒(csnp)(根据接枝质量分别为1%和3%)结合,制备了St-g-P4ABA/CSNPs1%和St-g-P4ABA/CSNPs3%纳米复合材料。采用核磁共振(1H NMR)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和x射线衍射等手段对纳米复合材料的成功合成进行了验证。csnp的加入显著提高了St-g-P4ABA共聚物在水和0.9%盐水溶液中的热稳定性和溶胀度,尤其是在盐水溶液中。与St-g-P4ABA相比,St-g-P4ABA/CSNP复合物对革兰氏阳性菌、革兰氏阴性菌和真菌具有更好的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1