{"title":"PERFORMANCE OF CARBOXYMETHYL CELLULOSE/POLYSULPHONE MEMBRANES PREPARED VIA DIFFERENT IMMERSION METHODS FOR SALT RICH WATERS","authors":"HANANE ABURIDEH, ZAHIA TIGRINE, DJAMILA ZIOUI, SARRA HOUT, LAMINE AOUDJIT, MOHAMED ABBAS","doi":"10.35812/cellulosechemtechnol.2023.57.80","DOIUrl":null,"url":null,"abstract":"cellulose (CMC)/polysulfone (PSf) by the crosslinking of glutaraldehyde (GA) or lactic acid (LA), using the non-solvent induced phase separation (NIPS) method. The effects of different parameters, such as the type and degree of crosslinking, the immersion method, and the coating procedure, including the thermal treatment have been studied. The prepared membranes were analyzed in terms of water absorption and flux, as well as their efficiency in retaining salt ions from synthetic waters rich in mono/divalent salts and real seawater samples. The optimized membrane containing 2% by weight of CMC and 2% of lactic acid as crosslinking agent, coagulated by immersion for 10 min, represented a rejection efficiency of 97.3%, 88.3% and 34% for the solutions of MgSO4, CaCO3 and NaCl, respectively. The optimal membrane recorded a pure water flux of 127.37 L/m²h, under a low transmembrane pressure of 10 bars, and permeability of 26 L/m² h bars. The membrane flux recovery rate was greater than 94%, indicating satisfactory resistance to fouling.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"45 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.80","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
cellulose (CMC)/polysulfone (PSf) by the crosslinking of glutaraldehyde (GA) or lactic acid (LA), using the non-solvent induced phase separation (NIPS) method. The effects of different parameters, such as the type and degree of crosslinking, the immersion method, and the coating procedure, including the thermal treatment have been studied. The prepared membranes were analyzed in terms of water absorption and flux, as well as their efficiency in retaining salt ions from synthetic waters rich in mono/divalent salts and real seawater samples. The optimized membrane containing 2% by weight of CMC and 2% of lactic acid as crosslinking agent, coagulated by immersion for 10 min, represented a rejection efficiency of 97.3%, 88.3% and 34% for the solutions of MgSO4, CaCO3 and NaCl, respectively. The optimal membrane recorded a pure water flux of 127.37 L/m²h, under a low transmembrane pressure of 10 bars, and permeability of 26 L/m² h bars. The membrane flux recovery rate was greater than 94%, indicating satisfactory resistance to fouling.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials