Efficient Hyperspectral Data Processing using File Fragmentation

IF 0.6 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Science and Technology Pub Date : 2023-09-01 DOI:10.2352/j.imagingsci.technol.2023.67.5.050403
C. Caruncho, P. J. Pardo, H. Cwierz
{"title":"Efficient Hyperspectral Data Processing using File Fragmentation","authors":"C. Caruncho, P. J. Pardo, H. Cwierz","doi":"10.2352/j.imagingsci.technol.2023.67.5.050403","DOIUrl":null,"url":null,"abstract":"In this article, we present a method for processing hyperspectral data in an easy and quick manner. We explain how we split the hyperspectral cube in different sections to be processed using fewer resources. We describe the processing, which includes extraction of the raw data along with white and black calibration data, calibration of the data and application of desired light source, color space, and gamma transformation. We then present a built-in software, including an easy interactive Graphical User Interface (GUI) that will allow fellow researchers to process hyperspectral images in a simple fashion.","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.5.050403","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a method for processing hyperspectral data in an easy and quick manner. We explain how we split the hyperspectral cube in different sections to be processed using fewer resources. We describe the processing, which includes extraction of the raw data along with white and black calibration data, calibration of the data and application of desired light source, color space, and gamma transformation. We then present a built-in software, including an easy interactive Graphical User Interface (GUI) that will allow fellow researchers to process hyperspectral images in a simple fashion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用文件碎片的高效高光谱数据处理
本文提出了一种简便、快速的高光谱数据处理方法。我们解释了如何将高光谱立方体分割成不同的部分,以便使用更少的资源进行处理。我们描述了处理过程,包括原始数据的提取以及黑白校准数据,数据的校准和所需光源,色彩空间和伽马变换的应用。然后,我们提出了一个内置的软件,包括一个简单的交互式图形用户界面(GUI),这将允许研究人员以简单的方式处理高光谱图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging Science and Technology
Journal of Imaging Science and Technology 工程技术-成像科学与照相技术
CiteScore
2.00
自引率
10.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Typical issues include research papers and/or comprehensive reviews from a variety of topical areas. In the spirit of fostering constructive scientific dialog, the Journal accepts Letters to the Editor commenting on previously published articles. Periodically the Journal features a Special Section containing a group of related— usually invited—papers introduced by a Guest Editor. Imaging research topics that have coverage in JIST include: Digital fabrication and biofabrication; Digital printing technologies; 3D imaging: capture, display, and print; Augmented and virtual reality systems; Mobile imaging; Computational and digital photography; Machine vision and learning; Data visualization and analysis; Image and video quality evaluation; Color image science; Image archiving, permanence, and security; Imaging applications including astronomy, medicine, sports, and autonomous vehicles.
期刊最新文献
Salient Semantic-SIFT for Robot Visual SLAM Closed-loop Detection Detection Performance of X-ray Cascaded Talbot–Lau Interferometers Using W-absorption Gratings Development of Paper Temperature Prediction Method in Electrophotographic Processes by Using Machine Learning and Thermal Network Model Color Image Stitching Elimination Method based on Co-occurrence Matrix New Perspective on Progressive GANs Distillation for One-class Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1