首页 > 最新文献

Journal of Imaging Science and Technology最新文献

英文 中文
Development of Paper Temperature Prediction Method in Electrophotographic Processes by Using Machine Learning and Thermal Network Model 利用机器学习和热网络模型开发电子照相工艺中的纸张温度预测方法
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-01-01 DOI: 10.2352/j.imagingsci.technol.2024.68.1.010504
Takamasa Hase, Takumi Ishikura, Shinichi Kuramoto, Koichi Kato, K. Fushinobu
{"title":"Development of Paper Temperature Prediction Method in Electrophotographic Processes by Using Machine Learning and Thermal Network Model","authors":"Takamasa Hase, Takumi Ishikura, Shinichi Kuramoto, Koichi Kato, K. Fushinobu","doi":"10.2352/j.imagingsci.technol.2024.68.1.010504","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2024.68.1.010504","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"12 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139127901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection Performance of X-ray Cascaded Talbot–Lau Interferometers Using W-absorption Gratings 使用 W-absorption 光栅的 X 射线级联塔尔博特-劳干涉仪的探测性能
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-01-01 DOI: 10.2352/j.imagingsci.technol.2024.68.1.010505
Jianheng Huang, Jiacheng Zeng, Minghui Zhu, Chengming Feng, Y. Lei, Xin Liu, Ji Li
{"title":"Detection Performance of X-ray Cascaded Talbot–Lau Interferometers Using W-absorption Gratings","authors":"Jianheng Huang, Jiacheng Zeng, Minghui Zhu, Chengming Feng, Y. Lei, Xin Liu, Ji Li","doi":"10.2352/j.imagingsci.technol.2024.68.1.010505","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2024.68.1.010505","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"23 23","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139127182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salient Semantic-SIFT for Robot Visual SLAM Closed-loop Detection 用于机器人视觉 SLAM 闭环检测的显著语义-SIFT
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-01-01 DOI: 10.2352/j.imagingsci.technol.2024.68.1.010502
Lihe Hu, Yi Zhang, Yang Wang
{"title":"Salient Semantic-SIFT for Robot Visual SLAM Closed-loop Detection","authors":"Lihe Hu, Yi Zhang, Yang Wang","doi":"10.2352/j.imagingsci.technol.2024.68.1.010502","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2024.68.1.010502","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"25 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139127174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Camera Motion Estimation Method using Depth-Normalized Criterion 使用深度归一化准则的摄像机运动估算方法
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060403
Seok Lee
{"title":"Camera Motion Estimation Method using Depth-Normalized Criterion","authors":"Seok Lee","doi":"10.2352/j.imagingsci.technol.2023.67.6.060403","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060403","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139293399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Perspective on Progressive GANs Distillation for One-class Anomaly Detection 一类异常检测中GANs精馏的新进展
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060504
Yu-Feng Dong, Zhao Zhang, Hanyu Peng, Shifeng Chen
{"title":"New Perspective on Progressive GANs Distillation for One-class Anomaly Detection","authors":"Yu-Feng Dong, Zhao Zhang, Hanyu Peng, Shifeng Chen","doi":"10.2352/j.imagingsci.technol.2023.67.6.060504","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060504","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46575497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daytime and Nighttime Image Haze Removal based on Improved Dark Channel Prior, Multiple-Scale Retinex, and Sparrow Search Optimization 基于改进的暗通道先验、多尺度Retinex和稀疏搜索优化的昼夜图像雾度去除
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060503
Chuang Li, Hao Zhou, Xin Xie, Yuanyuan Liu, Xiaoran Wang, Guangyu Lu, Hailing Xiong
{"title":"Daytime and Nighttime Image Haze Removal based on Improved Dark Channel Prior, Multiple-Scale Retinex, and Sparrow Search Optimization","authors":"Chuang Li, Hao Zhou, Xin Xie, Yuanyuan Liu, Xiaoran Wang, Guangyu Lu, Hailing Xiong","doi":"10.2352/j.imagingsci.technol.2023.67.6.060503","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060503","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47720510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Boosting Mislabels Correction with Semi-Supervised Learning and Deep Feature Similarity Measurements 基于半监督学习和深度特征相似度测量的性能提升错误标记校正
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060501
Chi-Chia Sun, Jing. Guo, Jheng-Han Lin, Ting-Yu Chang
{"title":"Performance Boosting Mislabels Correction with Semi-Supervised Learning and Deep Feature Similarity Measurements","authors":"Chi-Chia Sun, Jing. Guo, Jheng-Han Lin, Ting-Yu Chang","doi":"10.2352/j.imagingsci.technol.2023.67.6.060501","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060501","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48195038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Color Image Stitching Elimination Method based on Co-occurrence Matrix 基于共生矩阵的彩色图像拼接消除方法
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060502
Y. Su
{"title":"Color Image Stitching Elimination Method based on Co-occurrence Matrix","authors":"Y. Su","doi":"10.2352/j.imagingsci.technol.2023.67.6.060502","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060502","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46085981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Implementation of an Augmented Reality Thunderstorm Simulation for General Aviation Weather Theory Training 开发和实施用于通用航空气象理论培训的增强现实雷暴模拟器
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060402
Kexin Wang, Jack Miller, Philippe Meister, Michael C. Dorneich, Lori Brown, Geoff Whitehurst, E. Winer
. In 2021, there were 1,157 general aviation (GA) accidents, 210 of them fatal, making GA the deadliest civil aviation category. Research shows that accidents are partially caused by ineffective weather theory training. Current weather training in classrooms relies on 2D materials that students often find difficult to map into a real 3D environment. To address these issues, Augmented Reality (AR) was utilized to provide 3D immersive content while running on commodity devices. However, mobile devices have limitations in rendering, camera tracking, and screen size. These limitations make the implementation of mobile device based AR especially challenging for complex visualization of weather phenomena. This paper presents research on how to address the technical challenges of developing and implementing a complex thunderstorm visualization in a marker-based mobile AR application. The development of the system and a technological evaluation of the application’s rendering and tracking performance across different devices is presented.
.2021 年,共发生 1,157 起通用航空(GA)事故,其中 210 起为致命事故,使通用航空成为死亡人数最多的民用航空类别。研究表明,事故的部分原因是气象理论培训效果不佳。目前课堂上的气象培训依赖于二维材料,学生往往难以将其映射到真实的三维环境中。为了解决这些问题,我们利用增强现实技术(AR)在商品设备上运行,提供身临其境的三维内容。然而,移动设备在渲染、摄像头跟踪和屏幕尺寸方面存在限制。这些限制使得基于移动设备的增强现实技术的实施对于复杂的天气现象可视化尤其具有挑战性。本文介绍了如何解决在基于标记的移动 AR 应用程序中开发和实施复杂雷暴可视化所面临的技术挑战。本文介绍了该系统的开发过程,以及对该应用在不同设备上的渲染和跟踪性能进行的技术评估。
{"title":"Development and Implementation of an Augmented Reality Thunderstorm Simulation for General Aviation Weather Theory Training","authors":"Kexin Wang, Jack Miller, Philippe Meister, Michael C. Dorneich, Lori Brown, Geoff Whitehurst, E. Winer","doi":"10.2352/j.imagingsci.technol.2023.67.6.060402","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2023.67.6.060402","url":null,"abstract":". In 2021, there were 1,157 general aviation (GA) accidents, 210 of them fatal, making GA the deadliest civil aviation category. Research shows that accidents are partially caused by ineffective weather theory training. Current weather training in classrooms relies on 2D materials that students often find difficult to map into a real 3D environment. To address these issues, Augmented Reality (AR) was utilized to provide 3D immersive content while running on commodity devices. However, mobile devices have limitations in rendering, camera tracking, and screen size. These limitations make the implementation of mobile device based AR especially challenging for complex visualization of weather phenomena. This paper presents research on how to address the technical challenges of developing and implementing a complex thunderstorm visualization in a marker-based mobile AR application. The development of the system and a technological evaluation of the application’s rendering and tracking performance across different devices is presented.","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139305111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Modeling on Large Kernel Metamaterial Neural Network. 大内核超材料神经网络的数字建模
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-11-01 DOI: 10.2352/j.imagingsci.technol.2023.67.6.060404
Quan Liu, Hanyu Zheng, Brandon T Swartz, Ho Hin Lee, Zuhayr Asad, Ivan Kravchenko, Jason G Valentine, Yuankai Huo

Deep neural networks (DNNs) utilized recently are physically deployed with computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy computational burden, significant latency, and intensive power consumption, which are critical limitations in applications such as the Internet of Things (IoT), edge computing, and the usage of drones. Recent advances in optical computational units (e.g., metamaterial) have shed light on energy-free and light-speed neural networks. However, the digital design of the metamaterial neural network (MNN) is fundamentally limited by its physical limitations, such as precision, noise, and bandwidth during fabrication. Moreover, the unique advantages of MNN's (e.g., light-speed computation) are not fully explored via standard 3×3 convolution kernels. In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and network compression, while also considering the optical limitation explicitly. The new digital learning scheme can maximize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fabricated optical hardware. The experimental results on two publicly available datasets demonstrate that the optimized hybrid design improved classification accuracy while reducing computational latency. The development of the proposed LMNN is a promising step towards the ultimate goal of energy-free and light-speed AI.

最近使用的深度神经网络(DNN)是与计算单元(如 CPU 和 GPU)一起物理部署的。这种设计可能会导致沉重的计算负担、明显的延迟和密集的功耗,这些都是物联网(IoT)、边缘计算和无人机等应用的关键限制因素。光学计算单元(如超材料)的最新进展为无能耗和光速神经网络带来了曙光。然而,超材料神经网络(MNN)的数字设计从根本上受限于其物理限制,如制造过程中的精度、噪声和带宽。此外,MNN 的独特优势(如光速计算)并没有通过标准 3×3 卷积核得到充分发挥。在本文中,我们提出了一种新型大核超材料神经网络(LMNN),通过模型重参数化和网络压缩,最大限度地提高了最先进(SOTA)MNN 的数字容量,同时还明确考虑了光学限制。新的数字学习方案可以最大限度地提高 MNN 的学习能力,同时模拟元光学的物理限制。利用所提出的 LMNN,卷积前端的计算成本可被卸载到制造的光学硬件中。在两个公开数据集上的实验结果表明,优化的混合设计提高了分类精度,同时降低了计算延迟。拟议 LMNN 的开发是实现无能耗、光速人工智能终极目标的重要一步。
{"title":"Digital Modeling on Large Kernel Metamaterial Neural Network.","authors":"Quan Liu, Hanyu Zheng, Brandon T Swartz, Ho Hin Lee, Zuhayr Asad, Ivan Kravchenko, Jason G Valentine, Yuankai Huo","doi":"10.2352/j.imagingsci.technol.2023.67.6.060404","DOIUrl":"10.2352/j.imagingsci.technol.2023.67.6.060404","url":null,"abstract":"<p><p>Deep neural networks (DNNs) utilized recently are physically deployed with computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy computational burden, significant latency, and intensive power consumption, which are critical limitations in applications such as the Internet of Things (IoT), edge computing, and the usage of drones. Recent advances in optical computational units (e.g., metamaterial) have shed light on energy-free and light-speed neural networks. However, the digital design of the metamaterial neural network (MNN) is fundamentally limited by its physical limitations, such as precision, noise, and bandwidth during fabrication. Moreover, the unique advantages of MNN's (e.g., light-speed computation) are not fully explored via standard 3×3 convolution kernels. In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and network compression, while also considering the optical limitation explicitly. The new digital learning scheme can maximize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fabricated optical hardware. The experimental results on two publicly available datasets demonstrate that the optimized hybrid design improved classification accuracy while reducing computational latency. The development of the proposed LMNN is a promising step towards the ultimate goal of energy-free and light-speed AI.</p>","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"67 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Imaging Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1