Feature level fusion for land cover classification with landsat images: A hybrid classification model

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2023-10-06 DOI:10.3233/mgs-230034
Malige Gangappa
{"title":"Feature level fusion for land cover classification with landsat images: A hybrid classification model","authors":"Malige Gangappa","doi":"10.3233/mgs-230034","DOIUrl":null,"url":null,"abstract":"Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-230034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于陆地卫星影像的土地覆盖分类特征级融合:一种混合分类模型
利用卫星图像对土地覆盖进行分类是过去几年的一个主要领域。卫星图像系统获得的数据量的增加,要求有一种自动分类工具。卫星图像显示了时间或/和空间依赖性,传统的人工智能方法无法很好地执行。因此,建议的方法利用了一个全新的框架来分类土地覆盖直方图,在预处理过程中首先进行线性化。然后提取特征,包括光谱特征和空间特征。此外,在整个特征融合过程中合并生成的特征。最后,在分类阶段,引入了一种优化的长短期记忆(LSTM)和深度信念网络(DBN),以精确地描述分类结果。其中,基于对立行为学习的水波优化(OBL-WWO)模型用于调整LSTM和DBN的权值。最后,许多指标说明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloud Load balancing model for cloud environment using swarm intelligence technique An evolutionary mechanism of social preference for knowledge sharing in crowdsourcing communities Skin cancer detection: Improved deep belief network with optimal feature selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1