{"title":"Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media","authors":"S. T. S., P.S. Sreeja","doi":"10.3233/mgs-230033","DOIUrl":null,"url":null,"abstract":"Social platform have disseminated the news in rapid speed and has been considered an important news resource for many people over worldwide because of easy access and less cost benefits when compared with the traditional news organizations. Fake news is the news deliberately written by bad writers that manipulates the original contents and this rapid dissemination of fake news may mislead the people in the society. As a result, it is critical to investigate the veracity of the data leaked via social media platforms. Even so, the reliability of information reported via this platform is still doubtful and remains a significant obstacle. As a result, this study proposes a promising technique for identifying fake information in social media called Adam Adadelta Optimization based Deep Long Short-Term Memory (Deep LSTM). The tokenization operation in this case is carried out with the Bidirectional Encoder Representations from Transformers (BERT) approach. The measurement of the features is reduced with the assistance of Kernel Linear Discriminant Analysis (LDA), and Singular Value Decomposition (SVD) and the top-N attributes are chosen by employing Renyi joint entropy. Furthermore, the LSTM is applied to identify false information in social media, with Adam Adadelta Optimization, which comprises a combo of Adam Optimization and Adadelta Optimization . The Deep LSTM based on Adam Adadelta Optimization achieved maximum accuracy, sensitivity, specificity of 0.936, 0.942, and 0.925.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"23 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-230033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Social platform have disseminated the news in rapid speed and has been considered an important news resource for many people over worldwide because of easy access and less cost benefits when compared with the traditional news organizations. Fake news is the news deliberately written by bad writers that manipulates the original contents and this rapid dissemination of fake news may mislead the people in the society. As a result, it is critical to investigate the veracity of the data leaked via social media platforms. Even so, the reliability of information reported via this platform is still doubtful and remains a significant obstacle. As a result, this study proposes a promising technique for identifying fake information in social media called Adam Adadelta Optimization based Deep Long Short-Term Memory (Deep LSTM). The tokenization operation in this case is carried out with the Bidirectional Encoder Representations from Transformers (BERT) approach. The measurement of the features is reduced with the assistance of Kernel Linear Discriminant Analysis (LDA), and Singular Value Decomposition (SVD) and the top-N attributes are chosen by employing Renyi joint entropy. Furthermore, the LSTM is applied to identify false information in social media, with Adam Adadelta Optimization, which comprises a combo of Adam Optimization and Adadelta Optimization . The Deep LSTM based on Adam Adadelta Optimization achieved maximum accuracy, sensitivity, specificity of 0.936, 0.942, and 0.925.