首页 > 最新文献

Multiagent and Grid Systems最新文献

英文 中文
Load balancing model for cloud environment using swarm intelligence technique 使用蜂群智能技术的云环境负载平衡模型
IF 0.7 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-12-15 DOI: 10.3233/mgs-230021
G. Verma, Soumen Kanrar
A distributed system with a shared resource pool offers cloud computing services. According to the provider’s policy, customers can enjoy continuous access to these resources. Every time a job is transferred to the cloud to be carried out, the environment must be appropriately planned. A sufficient number of virtual machines (VM) must be accessible on the backend to do this. As a result, the scheduling method determines how well the system functions. An intelligent scheduling algorithm distributes the jobs among all VMs to balance the overall workload. This problem falls into the category of NP-Hard problems and is regarded as a load balancing problem. With spider monkey optimization, we have implemented a fresh strategy for more dependable and efficient load balancing in cloud environments. The suggested optimization strategy aims to boost performance by choosing the least-loaded VM to distribute the workloads. The simulation results clearly show that the proposed algorithm performs better regarding load balancing, reaction time, make span and resource utilization. The experimental results outperform the available approaches.
具有共享资源池的分布式系统提供云计算服务。根据提供商的政策,客户可以持续访问这些资源。每次将任务转移到云端执行时,都必须对环境进行适当规划。为此,后端必须有足够数量的虚拟机(VM)。因此,调度方法决定了系统功能的好坏。智能调度算法会在所有虚拟机之间分配作业,以平衡整体工作量。这个问题属于 NP-Hard 问题,被视为负载平衡问题。通过蜘蛛猴优化,我们在云环境中实施了一种更可靠、更高效的负载平衡新策略。建议的优化策略旨在通过选择负载最小的虚拟机来分配工作负载,从而提高性能。仿真结果清楚地表明,建议的算法在负载平衡、反应时间、跨度和资源利用率方面表现更佳。实验结果优于现有方法。
{"title":"Load balancing model for cloud environment using swarm intelligence technique","authors":"G. Verma, Soumen Kanrar","doi":"10.3233/mgs-230021","DOIUrl":"https://doi.org/10.3233/mgs-230021","url":null,"abstract":"A distributed system with a shared resource pool offers cloud computing services. According to the provider’s policy, customers can enjoy continuous access to these resources. Every time a job is transferred to the cloud to be carried out, the environment must be appropriately planned. A sufficient number of virtual machines (VM) must be accessible on the backend to do this. As a result, the scheduling method determines how well the system functions. An intelligent scheduling algorithm distributes the jobs among all VMs to balance the overall workload. This problem falls into the category of NP-Hard problems and is regarded as a load balancing problem. With spider monkey optimization, we have implemented a fresh strategy for more dependable and efficient load balancing in cloud environments. The suggested optimization strategy aims to boost performance by choosing the least-loaded VM to distribute the workloads. The simulation results clearly show that the proposed algorithm performs better regarding load balancing, reaction time, make span and resource utilization. The experimental results outperform the available approaches.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"104 8","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloud 基于混合信任的优化虚拟机迁移,用于异构云中的动态负载平衡和副本管理
IF 0.7 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-12-15 DOI: 10.3233/mgs-230025
M. H. Nebagiri, Latha Pillappa Hanumanthappa
Cloud computing is an upcoming technology that has garnered interest from academic as well as commercial domains. Cloud offers the advantage of providing huge computing capability as well as resources that are positioned at multiple locations irrespective of time or location of the user. Cloud utilizes the concept of virtualization to dispatch the multiple tasks encountered simultaneously to the server. However, allocation of tasks to the heterogeneous servers requires that the load is balanced among the servers. To address this issue, a trust based dynamic load balancing algorithm in distributed file system is proposed. Load balancing is performed by predicting the loads in the physical machine with the help of the Rider optimization algorithm-based Neural Network (RideNN). Further, load balancing is carried out using the proposed Fractional Social Deer Optimization (FSDO) algorithm, where the virtual machine migration is performed based on the load condition in the physical machine. Later, replica management is accomplished for managing the replica in distributed file system with the help of the devised FSDO algorithm. Moreover, the proposed FSDO based dynamic load balancing algorithm is evaluated for its performance based on parameters, like predicted load, prediction error, trust, cost and energy consumption with values 0.051, 0.723, 0.390 and 0.431J correspondingly.
云计算是一项即将问世的技术,受到学术界和商业领域的关注。云计算的优势在于提供巨大的计算能力和资源,这些资源分布在多个地点,不受时间或用户所在位置的限制。云利用虚拟化概念将同时遇到的多个任务分配给服务器。然而,向异构服务器分配任务需要在服务器之间平衡负载。为解决这一问题,提出了分布式文件系统中基于信任的动态负载平衡算法。负载平衡是在基于 Rider 优化算法的神经网络(RideNN)的帮助下,通过预测物理机的负载来实现的。此外,负载平衡还采用了所提出的分数社会逐鹿优化(FSDO)算法,根据物理机的负载情况进行虚拟机迁移。随后,在设计的 FSDO 算法的帮助下,完成了副本管理,以管理分布式文件系统中的副本。此外,还根据预测负载、预测误差、信任度、成本和能耗等参数对基于 FSDO 的动态负载平衡算法进行了性能评估,评估值分别为 0.051、0.723、0.390 和 0.431J。
{"title":"Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloud","authors":"M. H. Nebagiri, Latha Pillappa Hanumanthappa","doi":"10.3233/mgs-230025","DOIUrl":"https://doi.org/10.3233/mgs-230025","url":null,"abstract":"Cloud computing is an upcoming technology that has garnered interest from academic as well as commercial domains. Cloud offers the advantage of providing huge computing capability as well as resources that are positioned at multiple locations irrespective of time or location of the user. Cloud utilizes the concept of virtualization to dispatch the multiple tasks encountered simultaneously to the server. However, allocation of tasks to the heterogeneous servers requires that the load is balanced among the servers. To address this issue, a trust based dynamic load balancing algorithm in distributed file system is proposed. Load balancing is performed by predicting the loads in the physical machine with the help of the Rider optimization algorithm-based Neural Network (RideNN). Further, load balancing is carried out using the proposed Fractional Social Deer Optimization (FSDO) algorithm, where the virtual machine migration is performed based on the load condition in the physical machine. Later, replica management is accomplished for managing the replica in distributed file system with the help of the devised FSDO algorithm. Moreover, the proposed FSDO based dynamic load balancing algorithm is evaluated for its performance based on parameters, like predicted load, prediction error, trust, cost and energy consumption with values 0.051, 0.723, 0.390 and 0.431J correspondingly.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"58 3","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media 亚当-阿达德尔塔 基于变压器模型的双向编码器表示法优化社交媒体上的假新闻检测
IF 0.7 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-12-15 DOI: 10.3233/mgs-230033
S. T. S., P.S. Sreeja
Social platform have disseminated the news in rapid speed and has been considered an important news resource for many people over worldwide because of easy access and less cost benefits when compared with the traditional news organizations. Fake news is the news deliberately written by bad writers that manipulates the original contents and this rapid dissemination of fake news may mislead the people in the society. As a result, it is critical to investigate the veracity of the data leaked via social media platforms. Even so, the reliability of information reported via this platform is still doubtful and remains a significant obstacle. As a result, this study proposes a promising technique for identifying fake information in social media called Adam Adadelta Optimization based Deep Long Short-Term Memory (Deep LSTM). The tokenization operation in this case is carried out with the Bidirectional Encoder Representations from Transformers (BERT) approach. The measurement of the features is reduced with the assistance of Kernel Linear Discriminant Analysis (LDA), and Singular Value Decomposition (SVD) and the top-N attributes are chosen by employing Renyi joint entropy. Furthermore, the LSTM is applied to identify false information in social media, with Adam Adadelta Optimization, which comprises a combo of Adam Optimization and Adadelta Optimization . The Deep LSTM based on Adam Adadelta Optimization achieved maximum accuracy, sensitivity, specificity of 0.936, 0.942, and 0.925.
社交平台传播新闻的速度非常快,与传统的新闻机构相比,社交平台具有获取方便、成本低的优势,因此被认为是全球许多人的重要新闻资源。假新闻是由不良撰稿人故意篡改原始内容撰写的新闻,这种假新闻的快速传播可能会误导社会大众。因此,调查通过社交媒体平台泄露的数据的真实性至关重要。即便如此,通过这一平台报道的信息的可靠性仍然值得怀疑,并且仍然是一个重大障碍。因此,本研究提出了一种识别社交媒体虚假信息的有效技术,即基于亚当-阿达德尔塔优化的深度长短期记忆(Deep LSTM)。在这种情况下,标记化操作是通过变压器双向编码器表示法(BERT)进行的。在核线性判别分析(LDA)和奇异值分解(SVD)的帮助下,减少了特征的测量,并通过使用仁义联合熵(Renyi joint entropy)选择了前 N 个属性。此外,LSTM 还利用 Adam Adadelta Optimization(由 Adam Optimization 和 Adadelta Optimization 组合而成)识别社交媒体中的虚假信息。基于 Adam Adadelta 优化的深度 LSTM 的准确度、灵敏度和特异度分别达到了 0.936、0.942 和 0.925。
{"title":"Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media","authors":"S. T. S., P.S. Sreeja","doi":"10.3233/mgs-230033","DOIUrl":"https://doi.org/10.3233/mgs-230033","url":null,"abstract":"Social platform have disseminated the news in rapid speed and has been considered an important news resource for many people over worldwide because of easy access and less cost benefits when compared with the traditional news organizations. Fake news is the news deliberately written by bad writers that manipulates the original contents and this rapid dissemination of fake news may mislead the people in the society. As a result, it is critical to investigate the veracity of the data leaked via social media platforms. Even so, the reliability of information reported via this platform is still doubtful and remains a significant obstacle. As a result, this study proposes a promising technique for identifying fake information in social media called Adam Adadelta Optimization based Deep Long Short-Term Memory (Deep LSTM). The tokenization operation in this case is carried out with the Bidirectional Encoder Representations from Transformers (BERT) approach. The measurement of the features is reduced with the assistance of Kernel Linear Discriminant Analysis (LDA), and Singular Value Decomposition (SVD) and the top-N attributes are chosen by employing Renyi joint entropy. Furthermore, the LSTM is applied to identify false information in social media, with Adam Adadelta Optimization, which comprises a combo of Adam Optimization and Adadelta Optimization . The Deep LSTM based on Adam Adadelta Optimization achieved maximum accuracy, sensitivity, specificity of 0.936, 0.942, and 0.925.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"23 2","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An evolutionary mechanism of social preference for knowledge sharing in crowdsourcing communities 众包社区知识共享社会偏好的进化机制
IF 0.7 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-12-15 DOI: 10.3233/mgs-221532
Jianfeng Meng, Gongpeng Zhang, Zihan Li, Hongji Yang
Crowdsourcing community, as an important way for enterprises to obtain external public innovative knowledge in the era of the Internet and the rise of users, has a very broad application prospect and research value. However, the influence of social preference is seldom considered in the promotion of knowledge sharing in crowdsourcing communities. Therefore, on the basis of complex network evolutionary game theory and social preference theory, an evolutionary game model of knowledge sharing among crowdsourcing community users based on the characteristics of small world network structure is constructed. Through Matlab programming, the evolution and dynamic equilibrium of knowledge sharing among crowdsourcing community users on this network structure are simulated, and the experimental results without considering social preference and social preference are compared and analysed, and it is found that social preference can significantly promote the evolution of knowledge sharing in crowdsourcing communities. This research expands the research scope of the combination and application of complex network games and other disciplines, enriches the theoretical perspective of knowledge sharing research in crowdsourcing communities, and has a strong guiding significance for promoting knowledge sharing in crowdsourcing communities.
众包社区作为互联网时代和用户崛起时代企业获取外部公共创新知识的重要途径,具有非常广阔的应用前景和研究价值。然而,在促进众包社区知识共享的过程中,很少考虑社会偏好的影响。因此,在复杂网络演化博弈理论和社会偏好理论的基础上,根据小世界网络结构的特点,构建了众包社区用户知识共享的演化博弈模型。通过Matlab编程,模拟了该网络结构上众包社区用户知识共享的演化过程和动态均衡,并对不考虑社会偏好和社会偏好的实验结果进行了对比分析,发现社会偏好能显著促进众包社区知识共享的演化。该研究拓展了复杂网络博弈与其他学科结合应用的研究范围,丰富了众包社区知识共享研究的理论视角,对促进众包社区知识共享具有较强的指导意义。
{"title":"An evolutionary mechanism of social preference for knowledge sharing in crowdsourcing communities","authors":"Jianfeng Meng, Gongpeng Zhang, Zihan Li, Hongji Yang","doi":"10.3233/mgs-221532","DOIUrl":"https://doi.org/10.3233/mgs-221532","url":null,"abstract":"Crowdsourcing community, as an important way for enterprises to obtain external public innovative knowledge in the era of the Internet and the rise of users, has a very broad application prospect and research value. However, the influence of social preference is seldom considered in the promotion of knowledge sharing in crowdsourcing communities. Therefore, on the basis of complex network evolutionary game theory and social preference theory, an evolutionary game model of knowledge sharing among crowdsourcing community users based on the characteristics of small world network structure is constructed. Through Matlab programming, the evolution and dynamic equilibrium of knowledge sharing among crowdsourcing community users on this network structure are simulated, and the experimental results without considering social preference and social preference are compared and analysed, and it is found that social preference can significantly promote the evolution of knowledge sharing in crowdsourcing communities. This research expands the research scope of the combination and application of complex network games and other disciplines, enriches the theoretical perspective of knowledge sharing research in crowdsourcing communities, and has a strong guiding significance for promoting knowledge sharing in crowdsourcing communities.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"90 10","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature level fusion for land cover classification with landsat images: A hybrid classification model 基于陆地卫星影像的土地覆盖分类特征级融合:一种混合分类模型
Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-10-06 DOI: 10.3233/mgs-230034
Malige Gangappa
Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.
利用卫星图像对土地覆盖进行分类是过去几年的一个主要领域。卫星图像系统获得的数据量的增加,要求有一种自动分类工具。卫星图像显示了时间或/和空间依赖性,传统的人工智能方法无法很好地执行。因此,建议的方法利用了一个全新的框架来分类土地覆盖直方图,在预处理过程中首先进行线性化。然后提取特征,包括光谱特征和空间特征。此外,在整个特征融合过程中合并生成的特征。最后,在分类阶段,引入了一种优化的长短期记忆(LSTM)和深度信念网络(DBN),以精确地描述分类结果。其中,基于对立行为学习的水波优化(OBL-WWO)模型用于调整LSTM和DBN的权值。最后,许多指标说明了新方法的有效性。
{"title":"Feature level fusion for land cover classification with landsat images: A hybrid classification model","authors":"Malige Gangappa","doi":"10.3233/mgs-230034","DOIUrl":"https://doi.org/10.3233/mgs-230034","url":null,"abstract":"Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imbalanced data classification using improved synthetic minority over-sampling technique 利用改进的合成少数派过采样技术对不平衡数据进行分类
Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-10-06 DOI: 10.3233/mgs-230007
Yamijala Anusha, R. Visalakshi, Konda Srinivas
In data mining, deep learning and machine learning models face class imbalance problems, which result in a lower detection rate for minority class samples. An improved Synthetic Minority Over-sampling Technique (SMOTE) is introduced for effective imbalanced data classification. After collecting the raw data from PIMA, Yeast, E.coli, and Breast cancer Wisconsin databases, the pre-processing is performed using min-max normalization, cleaning, integration, and data transformation techniques to achieve data with better uniqueness, consistency, completeness and validity. An improved SMOTE algorithm is applied to the pre-processed data for proper data distribution, and then the properly distributed data is fed to the machine learning classifiers: Support Vector Machine (SVM), Random Forest, and Decision Tree for data classification. Experimental examination confirmed that the improved SMOTE algorithm with random forest attained significant classification results with Area under Curve (AUC) of 94.30%, 91%, 96.40%, and 99.40% on the PIMA, Yeast, E.coli, and Breast cancer Wisconsin databases.
在数据挖掘中,深度学习和机器学习模型面临着类不平衡问题,导致对少数类样本的检测率较低。提出了一种改进的合成少数派过采样技术(SMOTE),用于非平衡数据的有效分类。收集PIMA、Yeast、E.coli、Breast cancer Wisconsin数据库的原始数据后,采用min-max归一化、清洗、整合、数据转换等技术进行预处理,使数据具有更好的唯一性、一致性、完整性和有效性。采用改进的SMOTE算法对预处理数据进行适当的数据分布,然后将适当分布的数据提供给机器学习分类器:支持向量机(SVM)、随机森林(Random Forest)和决策树(Decision Tree)进行数据分类。实验验证改进的SMOTE算法在PIMA、酵母菌、大肠杆菌和乳腺癌Wisconsin数据库上取得了显著的分类效果,曲线下面积(Area under Curve, AUC)分别为94.30%、91%、96.40%和99.40%。
{"title":"Imbalanced data classification using improved synthetic minority over-sampling technique","authors":"Yamijala Anusha, R. Visalakshi, Konda Srinivas","doi":"10.3233/mgs-230007","DOIUrl":"https://doi.org/10.3233/mgs-230007","url":null,"abstract":"In data mining, deep learning and machine learning models face class imbalance problems, which result in a lower detection rate for minority class samples. An improved Synthetic Minority Over-sampling Technique (SMOTE) is introduced for effective imbalanced data classification. After collecting the raw data from PIMA, Yeast, E.coli, and Breast cancer Wisconsin databases, the pre-processing is performed using min-max normalization, cleaning, integration, and data transformation techniques to achieve data with better uniqueness, consistency, completeness and validity. An improved SMOTE algorithm is applied to the pre-processed data for proper data distribution, and then the properly distributed data is fed to the machine learning classifiers: Support Vector Machine (SVM), Random Forest, and Decision Tree for data classification. Experimental examination confirmed that the improved SMOTE algorithm with random forest attained significant classification results with Area under Curve (AUC) of 94.30%, 91%, 96.40%, and 99.40% on the PIMA, Yeast, E.coli, and Breast cancer Wisconsin databases.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective movie recommendation based on improved densenet model 基于改进的密度网络模型的有效电影推荐
Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-10-06 DOI: 10.3233/mgs-230012
V. Lakshmi Chetana, Raj Kumar Batchu, Prasad Devarasetty, Srilakshmi Voddelli, Varun Prasad Dalli
In recent times, recommendation systems provide suggestions for users by means of songs, products, movies, books, etc. based on a database. Usually, the movie recommendation system predicts the movies liked by the user based on attributes present in the database. The movie recommendation system is one of the widespread, useful and efficient applications for individuals in watching movies with minimal decision time. Several attempts are made by the researchers in resolving these problems like purchasing books, watching movies, etc. through developing a recommendation system. The majority of recommendation systems fail in addressing data sparsity, cold start issues, and malicious attacks. To overcome the above-stated problems, a new movie recommendation system is developed in this manuscript. Initially, the input data is acquired from Movielens 1M, Movielens 100K, Yahoo Y-10-10, and Yahoo Y-20-20 databases. Next, the data are rescaled using a min-max normalization technique that helps in handling the outlier efficiently. At last, the denoised data are fed to the improved DenseNet model for a relevant movie recommendation, where the developed model includes a weighting factor and class-balanced loss function for better handling of overfitting risk. Then, the experimental result indicates that the improved DenseNet model almost reduced by 5 to 10% of error values, and improved by around 2% of f-measure, precision, and recall values related to the conventional models on the Movielens 1M, Movielens 100K, Yahoo Y-10-10, and Yahoo Y-20-20 databases.
近年来,推荐系统以数据库为基础,通过歌曲、产品、电影、书籍等方式为用户提供建议。通常,电影推荐系统根据数据库中存在的属性来预测用户喜欢的电影。电影推荐系统是一个广泛的、有用的、高效的应用程序,为个人在最短的决策时间内观看电影。研究人员尝试通过开发推荐系统来解决这些问题,如购买书籍,看电影等。大多数推荐系统在处理数据稀疏性、冷启动问题和恶意攻击方面失败。为了克服上述问题,本文开发了一个新的电影推荐系统。最初,输入数据从Movielens 1M、Movielens 100K、Yahoo Y-10-10和Yahoo Y-20-20数据库获取。接下来,使用最小-最大归一化技术重新缩放数据,这有助于有效地处理离群值。最后,将去噪后的数据馈送到改进的DenseNet模型中进行相关的电影推荐,其中开发的模型包含加权因子和类平衡损失函数,以便更好地处理过拟合风险。实验结果表明,改进后的DenseNet模型在Movielens 1M、Movielens 100K、Yahoo Y-10-10和Yahoo Y-20-20数据库上,与传统模型相比,误差值几乎降低了5% ~ 10%,f-measure、精度和召回率提高了2%左右。
{"title":"Effective movie recommendation based on improved densenet model","authors":"V. Lakshmi Chetana, Raj Kumar Batchu, Prasad Devarasetty, Srilakshmi Voddelli, Varun Prasad Dalli","doi":"10.3233/mgs-230012","DOIUrl":"https://doi.org/10.3233/mgs-230012","url":null,"abstract":"In recent times, recommendation systems provide suggestions for users by means of songs, products, movies, books, etc. based on a database. Usually, the movie recommendation system predicts the movies liked by the user based on attributes present in the database. The movie recommendation system is one of the widespread, useful and efficient applications for individuals in watching movies with minimal decision time. Several attempts are made by the researchers in resolving these problems like purchasing books, watching movies, etc. through developing a recommendation system. The majority of recommendation systems fail in addressing data sparsity, cold start issues, and malicious attacks. To overcome the above-stated problems, a new movie recommendation system is developed in this manuscript. Initially, the input data is acquired from Movielens 1M, Movielens 100K, Yahoo Y-10-10, and Yahoo Y-20-20 databases. Next, the data are rescaled using a min-max normalization technique that helps in handling the outlier efficiently. At last, the denoised data are fed to the improved DenseNet model for a relevant movie recommendation, where the developed model includes a weighting factor and class-balanced loss function for better handling of overfitting risk. Then, the experimental result indicates that the improved DenseNet model almost reduced by 5 to 10% of error values, and improved by around 2% of f-measure, precision, and recall values related to the conventional models on the Movielens 1M, Movielens 100K, Yahoo Y-10-10, and Yahoo Y-20-20 databases.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin cancer detection: Improved deep belief network with optimal feature selection 皮肤癌检测:基于最优特征选择的改进深度信念网络
Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-10-06 DOI: 10.3233/mgs-230040
Jinu P. Sainudeen, Ceronmani Sharmila V, Parvathi R
During the past few decades, melanoma has grown increasingly prevalent, and timely identification is crucial for lowering the mortality rates linked to this kind of skin cancer. Because of this, having access to an automated, trustworthy system that can identify the existence of melanoma may be very helpful in the field of medical diagnostics. Because of this, we have introduced a revolutionary, five-stage method for detecting skin cancer. The input images are processed utilizing histogram equalization as well as Gaussian filtering techniques during the initial pre-processing stage. An Improved Balanced Iterative Reducing as well as Clustering utilizing Hierarchies (I-BIRCH) is proposed to provide better image segmentation by efficiently allotting the labels to the pixels. From those segmented images, features such as Improved Local Vector Pattern, local ternary pattern, and Grey level co-occurrence matrix as well as the local gradient patterns will be retrieved in the third stage. We proposed an Arithmetic Operated Honey Badger Algorithm (AOHBA) to choose the best features from the retrieved characteristics, which lowered the computational expense as well as training time. In order to demonstrate the effectiveness of our proposed skin cancer detection strategy, the categorization is done using an improved Deep Belief Network (DBN) with respect to those chosen features. The performance assessment findings are then matched with existing methodologies.
在过去的几十年里,黑色素瘤变得越来越普遍,及时识别对于降低与这种皮肤癌相关的死亡率至关重要。正因为如此,拥有一个能够识别黑色素瘤存在的自动化、可靠的系统,可能在医学诊断领域非常有帮助。正因为如此,我们引进了一种革命性的五阶段皮肤癌检测方法。在初始预处理阶段,使用直方图均衡化以及高斯滤波技术处理输入图像。提出了一种基于层次结构的改进平衡迭代约简聚类方法(I-BIRCH),通过有效地为像素分配标签来提供更好的图像分割。在第三阶段,从这些分割的图像中提取改进的局部向量模式、局部三元模式、灰度共生矩阵等特征以及局部梯度模式。提出了一种算法操作蜜獾算法(AOHBA),从检索到的特征中选择最优特征,降低了计算量和训练时间。为了证明我们提出的皮肤癌检测策略的有效性,使用改进的深度信念网络(DBN)对所选特征进行分类。然后将绩效评估结果与现有方法相匹配。
{"title":"Skin cancer detection: Improved deep belief network with optimal feature selection","authors":"Jinu P. Sainudeen, Ceronmani Sharmila V, Parvathi R","doi":"10.3233/mgs-230040","DOIUrl":"https://doi.org/10.3233/mgs-230040","url":null,"abstract":"During the past few decades, melanoma has grown increasingly prevalent, and timely identification is crucial for lowering the mortality rates linked to this kind of skin cancer. Because of this, having access to an automated, trustworthy system that can identify the existence of melanoma may be very helpful in the field of medical diagnostics. Because of this, we have introduced a revolutionary, five-stage method for detecting skin cancer. The input images are processed utilizing histogram equalization as well as Gaussian filtering techniques during the initial pre-processing stage. An Improved Balanced Iterative Reducing as well as Clustering utilizing Hierarchies (I-BIRCH) is proposed to provide better image segmentation by efficiently allotting the labels to the pixels. From those segmented images, features such as Improved Local Vector Pattern, local ternary pattern, and Grey level co-occurrence matrix as well as the local gradient patterns will be retrieved in the third stage. We proposed an Arithmetic Operated Honey Badger Algorithm (AOHBA) to choose the best features from the retrieved characteristics, which lowered the computational expense as well as training time. In order to demonstrate the effectiveness of our proposed skin cancer detection strategy, the categorization is done using an improved Deep Belief Network (DBN) with respect to those chosen features. The performance assessment findings are then matched with existing methodologies.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep embedded clustering with matrix factorization based user rating prediction for collaborative recommendation 基于矩阵分解的深度嵌入聚类协同推荐用户评分预测
Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-10-06 DOI: 10.3233/mgs-230039
Jagannath E. Nalavade, Chandra Sekhar Kolli, Sanjay Nakharu Prasad Kumar
Conventional recommendation techniques utilize various methods to compute the similarity among products and customers in order to identify the customer preferences. However, such conventional similarity computation techniques may produce incomplete information influenced by similarity measures in customers’ preferences, which leads to poor accuracy on recommendation. Hence, this paper introduced the novel and effective recommendation technique, namely Deep Embedded Clustering with matrix factorization (DEC with matrix factorization) for the collaborative recommendation. This approach creates the agglomerative matrix for the recommendation using the review data. The customer series matrix, customer series binary matrix, product series matrix, and product series binary matrix make up the agglomerative matrix. The product grouping is carried out to group the similar products using DEC for retrieving the optimal product. Moreover, the bi-level matching generates the best group customer sequence in which the relevant customers are retrieved using tversky index and angular distance. Also, the final product suggestion is made using matrix factorization, with the goal of recommending to clients the product with the highest rating. Also, according to the experimental results, the developed DEC with the matrix factorization approach produced better results with respect to f-measure values of 0.902, precision values of 0.896, and recall values of 0.908, respectively.
传统的推荐技术利用各种方法来计算产品和顾客之间的相似度,以确定顾客的偏好。然而,这种传统的相似度计算技术可能会受到客户偏好中相似度度量的影响而产生不完整的信息,从而导致推荐的准确性较差。为此,本文提出了一种新颖有效的协同推荐技术——基于矩阵分解的深度嵌入聚类(DEC with matrix factorization)。这种方法使用审查数据为推荐创建聚合矩阵。顾客级数矩阵、顾客级数二进制矩阵、产品级数矩阵、产品级数二进制矩阵构成凝聚矩阵。利用DEC对同类产品进行分组,检索最优产品。利用tversky指数和角距离对相关客户进行检索,生成最佳群客户序列。最后,使用矩阵分解法给出产品建议,目的是向客户推荐评分最高的产品。实验结果表明,采用矩阵分解方法开发的DEC的f-measure值为0.902,精密度值为0.896,召回率为0.908。
{"title":"Deep embedded clustering with matrix factorization based user rating prediction for collaborative recommendation","authors":"Jagannath E. Nalavade, Chandra Sekhar Kolli, Sanjay Nakharu Prasad Kumar","doi":"10.3233/mgs-230039","DOIUrl":"https://doi.org/10.3233/mgs-230039","url":null,"abstract":"Conventional recommendation techniques utilize various methods to compute the similarity among products and customers in order to identify the customer preferences. However, such conventional similarity computation techniques may produce incomplete information influenced by similarity measures in customers’ preferences, which leads to poor accuracy on recommendation. Hence, this paper introduced the novel and effective recommendation technique, namely Deep Embedded Clustering with matrix factorization (DEC with matrix factorization) for the collaborative recommendation. This approach creates the agglomerative matrix for the recommendation using the review data. The customer series matrix, customer series binary matrix, product series matrix, and product series binary matrix make up the agglomerative matrix. The product grouping is carried out to group the similar products using DEC for retrieving the optimal product. Moreover, the bi-level matching generates the best group customer sequence in which the relevant customers are retrieved using tversky index and angular distance. Also, the final product suggestion is made using matrix factorization, with the goal of recommending to clients the product with the highest rating. Also, according to the experimental results, the developed DEC with the matrix factorization approach produced better results with respect to f-measure values of 0.902, precision values of 0.896, and recall values of 0.908, respectively.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning based graphical password authentication approach against shoulder-surfing attacks 基于深度学习的图形密码认证方法对抗肩部冲浪攻击
IF 0.7 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-06-08 DOI: 10.3233/mgs-230024
Norman Dias, Mouleeswaran Singanallur Kumaresan, Reeja Sundaran Rajakumari
The password used to authenticate users is vulnerable to shoulder-surfing assaults, in which attackers directly observe users and steal their passwords without using any other technical upkeep. The graphical password system is regarded as a likely backup plan to the alphanumeric password system. Additionally, for system privacy and security, a number of programs make considerable use of the graphical password-based authentication method. The user chooses the image for the authentication procedure when using a graphical password. Furthermore, graphical password approaches are more secure than text-based password methods. In this paper, the effective graphical password authentication model, named as Deep Residual Network based Graphical Password is introduced. Generally, the graphical password authentication process includes three phases, namely registration, login, and authentication. The secret pass image selection and challenge set generation process is employed in the two-step registration process. The challenge set generation is mainly carried out based on the generation of decoy and pass images by performing an edge detection process. In addition, edge detection is performed using the Deep Residual Network classifier. The developed Deep Residual Network based Graphical Password algorithm outperformance than other existing graphical password authentication methods in terms of Information Retention Rate and Password Diversity Score of 0.1716 and 0.1643, respectively.
用于验证用户身份的密码很容易受到肩部冲浪攻击,攻击者在不使用任何其他技术维护的情况下直接观察用户并窃取他们的密码。图形密码系统被视为字母数字密码系统的可能备份计划。此外,为了系统隐私和安全,许多程序大量使用基于图形密码的身份验证方法。用户在使用图形密码时选择用于身份验证过程的图像。此外,图形密码方法比基于文本的密码方法更安全。本文介绍了一种有效的图形密码认证模型——基于深度残差网络的图形密码。通常,图形密码身份验证过程包括三个阶段,即注册、登录和身份验证。在两步配准过程中采用了秘密通道图像选择和挑战集生成过程。挑战集的生成主要基于通过执行边缘检测处理来生成诱饵和通过图像。此外,使用深度残差网络分类器进行边缘检测。所开发的基于深度残差网络的图形密码算法在信息保留率和密码多样性得分方面分别优于其他现有的图形密码认证方法0.1716和0.1643。
{"title":"Deep learning based graphical password authentication approach against shoulder-surfing attacks","authors":"Norman Dias, Mouleeswaran Singanallur Kumaresan, Reeja Sundaran Rajakumari","doi":"10.3233/mgs-230024","DOIUrl":"https://doi.org/10.3233/mgs-230024","url":null,"abstract":"The password used to authenticate users is vulnerable to shoulder-surfing assaults, in which attackers directly observe users and steal their passwords without using any other technical upkeep. The graphical password system is regarded as a likely backup plan to the alphanumeric password system. Additionally, for system privacy and security, a number of programs make considerable use of the graphical password-based authentication method. The user chooses the image for the authentication procedure when using a graphical password. Furthermore, graphical password approaches are more secure than text-based password methods. In this paper, the effective graphical password authentication model, named as Deep Residual Network based Graphical Password is introduced. Generally, the graphical password authentication process includes three phases, namely registration, login, and authentication. The secret pass image selection and challenge set generation process is employed in the two-step registration process. The challenge set generation is mainly carried out based on the generation of decoy and pass images by performing an edge detection process. In addition, edge detection is performed using the Deep Residual Network classifier. The developed Deep Residual Network based Graphical Password algorithm outperformance than other existing graphical password authentication methods in terms of Information Retention Rate and Password Diversity Score of 0.1716 and 0.1643, respectively.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42348269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Multiagent and Grid Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1